
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716744/publications.pdf Version: 2024-02-01

H F POSENBERC

#	Article	IF	CITATIONS
1	Generation of Mouse Eosinophils in Tissue Culture from Unselected Bone Marrow Progenitors. Methods in Molecular Biology, 2021, 2241, 37-47.	0.9	4
2	Differential expression of Triggering Receptor Expressed on Myeloid cells 2 (<i>Trem2</i>) in tissue eosinophils. Journal of Leukocyte Biology, 2021, 110, 679-691.	3.3	2
3	Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars in Immunopathology, 2021, 43, 383-392.	6.1	36
4	Impact of controlled high-sucrose and high-fat diets on eosinophil recruitment and cytokine content in allergen-challenged mice. PLoS ONE, 2021, 16, e0255997.	2.5	5
5	Detection of Mouse Eosinophils in Tissue by Flow Cytometry and Isolation by Fluorescence-Activated Cell Sorting (FACS). Methods in Molecular Biology, 2021, 2241, 49-58.	0.9	2
6	Respiratory Epithelial Cells Respond to Lactobacillus plantarum but Provide No Cross-Protection against Virus-Induced Inflammation. Viruses, 2021, 13, 2.	3.3	12
7	Frontline Science: Cytokine-mediated developmental phenotype of mouse eosinophils: IL-5-associated expression of the Ly6C/Gr1 surface Ag. Journal of Leukocyte Biology, 2020, 107, 367-377.	3.3	13
8	The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. International Archives of Allergy and Immunology, 2020, 181, 11-23.	2.1	65
9	Alternaria alternata Accelerates Loss of Alveolar Macrophages and Promotes Lethal Influenza A Infection. Viruses, 2020, 12, 946.	3.3	1
10	Eosinophils Do Not Drive Acute Muscle Pathology in the mdx Mouse Model of Duchenne Muscular Dystrophy. Journal of Immunology, 2019, 203, 476-484.	0.8	14
11	Cytokine Diversity in Human Peripheral Blood Eosinophils: Profound Variability of IL-16. Journal of Immunology, 2019, 203, 520-531.	0.8	8
12	Critical Adverse Impact of IL-6 in Acute Pneumovirus Infection. Journal of Immunology, 2019, 202, 871-882.	0.8	33
13	<i>Alternaria alternata</i> challenge at the nasal mucosa results in eosinophilic inflammation and increased susceptibility to influenza virus infection. Clinical and Experimental Allergy, 2018, 48, 691-702.	2.9	11
14	Modeling asthma: Pitfalls, promises, and the road ahead. Journal of Leukocyte Biology, 2018, 104, 41-48.	3.3	21
15	FACS isolation of live mouse eosinophils at high purity via a protocol that does not target Siglec F. Journal of Immunological Methods, 2018, 454, 27-31.	1.4	9
16	Eosinophil persistence in vivo and sustained viability ex vivo in response to respiratory challenge with fungal allergens. Clinical and Experimental Allergy, 2018, 48, 29-38.	2.9	13
17	Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. Journal of Leukocyte Biology, 2018, 105, 151-161.	3.3	13
18	Administration of immunobiotic Lactobacillus plantarum delays but does not prevent lethal pneumovirus infection in Rag1 â^'/â^' mice. Journal of Leukocyte Biology, 2017, 102, 905-913.	3.3	5

#	Article	IF	CITATIONS
19	In Memory and Celebration: Dr. James J. Lee. Clinical and Experimental Allergy, 2017, 47, 980-981.	2.9	0
20	A flow-cytometric method to evaluate eosinophil-mediated uptake of probiotic Lactobacillus reuteri. Journal of Microbiological Methods, 2017, 137, 19-24.	1.6	3
21	Modeling <scp>T_H</scp> 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Reviews, 2017, 278, 20-40.	6.0	107
22	Silkworm larvae plasma (SLP) assay for detection of bacteria: False positives secondary to inflammation in vivo. Journal of Microbiological Methods, 2017, 132, 9-13.	1.6	3
23	SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. Journal of Leukocyte Biology, 2017, 101, 321-328.	3.3	66
24	Eosinophils, galectins, and a reason to breathe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9139-9141.	7.1	6
25	Eosinophils, probiotics, and the microbiome. Journal of Leukocyte Biology, 2016, 100, 881-888.	3.3	38
26	Signaling via pattern recognition receptors NOD2 and TLR2 contributes to immunomodulatory control of lethal pneumovirus infection. Antiviral Research, 2016, 132, 131-140.	4.1	25
27	Immortalized MH-S cells lack defining features of primary alveolar macrophages and do not support mouse pneumovirus replication. Immunology Letters, 2016, 172, 106-112.	2.5	12
28	Priming of the Respiratory Tract with Immunobiotic <i>Lactobacillus plantarum</i> Limits Infection of Alveolar Macrophages with Recombinant Pneumonia Virus of Mice (rK2-PVM). Journal of Virology, 2016, 90, 979-991.	3.4	18
29	Eosinophil-Derived Neurotoxin (EDN/RNase 2) and the Mouse Eosinophil-Associated RNases (mEars): Expanding Roles in Promoting Host Defense. International Journal of Molecular Sciences, 2015, 16, 15442-15455.	4.1	73
30	Eosinophil-associated Ribonuclease 11 Is a Macrophage Chemoattractant. Journal of Biological Chemistry, 2015, 290, 8863-8875.	3.4	13
31	Immunobiotic Lactobacillus administered post-exposure averts the lethal sequelae of respiratory virus infection. Antiviral Research, 2015, 121, 109-119.	4.1	32
32	Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations. Journal of Leukocyte Biology, 2014, 96, 391-396.	3.3	50
33	B Cells Are Not Essential for <i>Lactobacillus</i> -Mediated Protection against Lethal Pneumovirus Infection. Journal of Immunology, 2014, 192, 5265-5272.	0.8	15
34	Activated mouse eosinophils protect against lethal respiratory virus infection. Blood, 2014, 123, 743-752.	1.4	100
35	Eosinophils and Respiratory Virus Infection: A Dual-Standard Curve qRT-PCR-Based Method for Determining Virus Recovery from Mouse Lung Tissue. Methods in Molecular Biology, 2014, 1178, 257-266.	0.9	21
36	Chemotaxis of bone marrow derived eosinophils in vivo: A novel method to explore receptorâ€dependent trafficking in the mouse. European Journal of Immunology, 2013, 43, 2217-2228.	2.9	6

#	Article	IF	CITATIONS
37	Eosinophils: changing perspectives in health and disease. Nature Reviews Immunology, 2013, 13, 9-22.	22.7	736
38	Lactobacillus priming of the respiratory tract: Heterologous immunity and protection against lethal pneumovirus infection. Antiviral Research, 2013, 97, 270-279.	4.1	51
39	Editorial: Mouse eosinophils expressing Cre recombinase: endless "floxâ€ibilities. Journal of Leukocyte Biology, 2013, 94, 3-4.	3.3	2
40	Inflammatory Responses to Respiratory Syncytial Virus (RSV) Infection and the Development of Immunomodulatory Pharmacotherapeutics. Current Medicinal Chemistry, 2012, 19, 1424-1431.	2.4	55
41	Antigen profiles for the quantitative assessment of eosinophils in mouse tissues by flow cytometry. Journal of Immunological Methods, 2011, 369, 91-97.	1.4	44
42	Canine pneumovirus replicates in mouse lung tissue and elicits inflammatory pathology. Virology, 2011, 416, 26-31.	2.4	19
43	<i>Lactobacillus</i> -Mediated Priming of the Respiratory Mucosa Protects against Lethal Pneumovirus Infection. Journal of Immunology, 2011, 186, 1151-1161.	0.8	105
44	Isolation of human eosinophils: microbead method has no impact on IL-5 sustained viability. Experimental Dermatology, 2010, 19, 467-469.	2.9	12
45	Respiratory viruses and eosinophils: Exploring the connections. Antiviral Research, 2009, 83, 1-9.	4.1	86
46	Eosinophils and their interactions with respiratory virus pathogens. Immunologic Research, 2009, 43, 128-137.	2.9	44
47	RNase 1 genes from the family Sciuridae define a novel rodent ribonuclease cluster. Mammalian Genome, 2009, 20, 749-757.	2.2	5
48	Pneumonia virus of mice: severe respiratory infection in a natural host. Immunology Letters, 2008, 118, 6-12.	2.5	66
49	The many faces of IgE: an interview with Dr. Toshiaki Kawakami. Journal of Leukocyte Biology, 2008, 84, 368-370.	3.3	0
50	RNase A ribonucleases and host defense: an evolving story. Journal of Leukocyte Biology, 2008, 83, 1079-1087.	3.3	173
51	Functionally Competent Eosinophils Differentiated Ex Vivo in High Purity from Normal Mouse Bone Marrow. Journal of Immunology, 2008, 181, 4004-4009.	0.8	227
52	The immunobiology of eosinophils—it's a whole new world out there: an interview with Dr. Peter F. Weller. Journal of Leukocyte Biology, 2008, 83, 822-823.	3.3	2
53	Targeting Eosinophils in Asthma. Current Molecular Medicine, 2008, 8, 585-590.	1.3	30
54	Eosinophil-Derived Neurotoxin / RNase 2: Connecting the Past, the Present and the Future. Current Pharmaceutical Biotechnology, 2008, 9, 135-140.	1.6	66

#	Article	IF	CITATIONS
55	Toll-like receptors, endogenous ligands, and constitutive control (or, why l'm still standing at the) Tj ETQq1 1	0,784314	rgBT /Over
56	Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood, 2007, 110, 1578-1586.	1.4	263
57	Mucosal inoculation with an attenuated mouse pneumovirus strain protects against virulent challenge in wild type and interferon-gamma receptor deficient mice. Vaccine, 2007, 25, 1085-1095.	3.8	21
58	Eosinophil trafficking in allergy and asthma. Journal of Allergy and Clinical Immunology, 2007, 119, 1303-1310.	2.9	341
59	Schistosoma mansoni infection in eosinophil lineage–ablated mice. Blood, 2006, 108, 2420-2427.	1.4	183
60	The RNase a superfamily: Generation of diversity and innate host defense. Molecular Diversity, 2006, 10, 585-597.	3.9	131
61	Interview with Dr. Nancy A. Lee and Dr. James J. Lee regarding Pivotal Advance: Eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. Journal of Leukocyte Biology, 2006, 79, 1129-1130.	3.3	2
62	Interview with Dr. Francisco Sánchez-Madrid regarding Pivotal Advance: CD69 targeting differentially affects the course of collagen-induced arthritis. Journal of Leukocyte Biology, 2006, 80, 1231-1232.	3.3	0
63	The pneumonia virus of mice infection model for severe respiratory syncytial virus infection: identifying novel targets for therapeutic intervention. , 2005, 105, 1-6.		59
64	Plasminogen activator inhibitor-2 (PAI-2) in eosinophilic leukocytes. Journal of Leukocyte Biology, 2004, 76, 812-819.	3.3	28
65	Characterization of the divergent eosinophil ribonuclease, mEar 6, and its expression in response to Schistosoma mansoni infection in vivo. Genes and Immunity, 2004, 5, 668-674.	4.1	11
66	Gene microarray analysis reveals interleukin-5–dependent transcriptional targets in mouse bone marrow. Blood, 2004, 103, 868-877.	1.4	41
67	Diminished expression of an antiviral ribonuclease in response to pneumovirus infection in vivo. Antiviral Research, 2003, 59, 181-191.	4.1	16
68	Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood, 2003, 102, 3396-3403.	1.4	145
69	Assays for Detection of RNase A Superfamily Ribonucleases. , 2001, 160, 355-362.		2
70	Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. Journal of Leukocyte Biology, 2001, 70, 691-8.	3.3	184
71	Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4701-4706.	7.1	153
72	Respiratory Syncytical Virus–induced Chemokine Expression in the Lower Airways. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 1918-1924.	5.6	243

#	Article	IF	CITATIONS
73	Eosinophils inhibit retroviral transduction of human target cells by a ribonuclease-dependent mechanism. Journal of Leukocyte Biology, 1997, 62, 363-368.	3.3	37