
J Marie Hardwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization. Cell Reports, 2022, 39, 110647.	6.4	11
2	The Dark Side of Estrogen Stops Translation to Induce Apoptosis. Molecular Cell, 2019, 75, 1087-1089.	9.7	8
3	Whi2: a new player in amino acid sensing. Current Genetics, 2019, 65, 701-709.	1.7	16
4	Targeting intrinsic cell death pathways to control fungal pathogens. Biochemical Pharmacology, 2019, 162, 71-78.	4.4	22
5	<i>KCTD</i> : A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neuroscience and Therapeutics, 2019, 25, 887-902.	3.9	66
6	Overview of BCL-2 Family Proteins and Therapeutic Potentials. Methods in Molecular Biology, 2019, 1877, 1-21.	0.9	36
7	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
8	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	11.2	120
9	<i>KCTD7</i> deficiency defines a distinct neurodegenerative disorder with a conserved autophagyâ€lysosome defect. Annals of Neurology, 2018, 84, 766-780.	5.3	42
10	Whi2 signals low leucine availability to halt yeast growth and cell death. FEMS Yeast Research, 2018, 18, .	2.3	14
11	Comment on "Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death― Science, 2018, 360, .	12.6	10
12	Do Fungi Undergo Apoptosis-Like Programmed Cell Death?. MBio, 2018, 9, .	4.1	21
13	Whi2 is a conserved negative regulator of TORC1 in response to low amino acids. PLoS Genetics, 2018, 14, e1007592.	3.5	36
14	Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochemistry International, 2017, 109, 141-161.	3.8	70
15	Controlling caspase activity in life and death. PLoS Genetics, 2017, 13, e1006545.	3.5	14
16	In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila . Journal of Visualized Experiments, 2016, , .	0.3	4
17	Strategies for Tracking Anastasis, A Cell Survival Phenomenon that Reverses Apoptosis. Journal of Visualized Experiments, 2015, , .	0.3	24
18	In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Scientific Reports, 2015, 5, 9015.	3.3	92

#	Article	IF	CITATIONS
19	Cell death in genome evolution. Seminars in Cell and Developmental Biology, 2015, 39, 3-11.	5.0	8
20	Potent anti-seizure effects of D-leucine. Neurobiology of Disease, 2015, 82, 46-53.	4.4	35
21	Redefining the BH3 Death Domain as a â€~Short Linear Motif'. Trends in Biochemical Sciences, 2015, 40, 736-748.	7.5	57
22	Genome-wide Consequences of Deleting Any Single Gene. Molecular Cell, 2013, 52, 485-494.	9.7	163
23	Unlatched BAX Pairs for Death. Cell, 2013, 152, 383-384.	28.9	5
24	Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends in Cell Biology, 2013, 23, 103-111.	7.9	86
25	Quantification of Genetically Controlled Cell Death in Budding Yeast. Methods in Molecular Biology, 2013, 1004, 161-170.	0.9	15
26	The N-terminal helix of Bcl-xL targets mitochondria. Mitochondrion, 2013, 13, 119-124.	3.4	13
27	Multiple Functions of BCL-2 Family Proteins. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008722-a008722.	5.5	458
28	A New View of the Lethal Apoptotic Pore. PLoS Biology, 2012, 10, e1001399.	5.6	60
29	N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death. Nature Neuroscience, 2012, 15, 574-580.	14.8	70
30	Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends in Cell Biology, 2012, 22, 318-328.	7.9	96
31	The mTOR Inhibitor Rapamycin Has Limited Acute Anticonvulsant Effects in Mice. PLoS ONE, 2012, 7, e45156.	2.5	55
32	Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nature Cell Biology, 2011, 13, 1224-1233.	10.3	245
33	Mitochondrial involvement in cell death of non-mammalian eukaryotes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 597-607.	4.1	46
34	Flying to a halt. Cell Cycle, 2011, 10, 1350-1351.	2.6	1
35	Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. Journal of Cell Biology, 2011, 195, 263-276.	5.2	182
36	Seizure tests distinguish intermittent fasting from the ketogenic diet. Epilepsia, 2010, 51, 1395-1402.	5.1	36

#	Article	IF	CITATIONS
37	Noncanonical Functions of BCL-2 Proteins in the Nervous System. Advances in Experimental Medicine and Biology, 2010, 687, 115-129.	1.6	7
38	Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons. Journal of Cell Biology, 2009, 184, 707-719.	5.2	203
39	Reliable Method for Detection of Programmed Cell Death in Yeast. Methods in Molecular Biology, 2009, 559, 335-342.	0.9	20
40	Bcl-2 turns deadly. Nature Chemical Biology, 2008, 4, 722-723.	8.0	6
41	Mitochondrial death pathways in yeast and mammalian cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1272-1279.	4.1	56
42	Aven-Dependent Activation of ATM Following DNA Damage. Current Biology, 2008, 18, 933-942.	3.9	58
43	Bcl-x _L induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2169-2174.	7.1	210
44	Unravelling the Bcl-2 Apoptosis Code with a Simple Model System. PLoS Biology, 2008, 6, e154.	5.6	25
45	Anti-apoptotic Bcl-2 Family Proteins Disassemble Ceramide Channels. Journal of Biological Chemistry, 2008, 283, 6622-6630.	3.4	110
46	Bcl-xL Inhibitor ABT-737 Reveals a Dual Role for Bcl-xL in Synaptic Transmission. Journal of Neurophysiology, 2008, 99, 1515-1522.	1.8	49
47	A Bcl-xL Timer Sets Platelet Life Span. Cell, 2007, 128, 1035-1036.	28.9	28
48	Upgrading the BCL-2 Network. Nature Cell Biology, 2006, 8, 1317-1319.	10.3	113
49	Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnology and Bioengineering, 2006, 94, 362-372.	3.3	51
50	Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain. Journal of Neuroscience, 2006, 26, 6851-6862.	3.6	93
51	Viruses activate a genetically conserved cell death pathway in a unicellular organism. Journal of Cell Biology, 2005, 170, 391-399.	5.2	90
52	Actions of BAX on Mitochondrial Channel Activity and on Synaptic Transmission. Antioxidants and Redox Signaling, 2005, 7, 1092-1100.	5.4	26
53	Exposure to Hypoxia Rapidly Induces Mitochondrial Channel Activity within a Living Synapse. Journal of Biological Chemistry, 2005, 280, 4491-4497.	3.4	45
54	Magnetic Resonance Diffusion Tensor Microimaging Reveals a Role for Bcl-x in Brain Development and Homeostasis. Journal of Neuroscience, 2005, 25, 1881-1888.	3.6	39

#	Article	IF	CITATIONS
55	Regulation of Cell Death in the Lymphoid System by Bcl-2 Family Proteins. Acta Haematologica, 2004, 111, 42-55.	1.4	11
56	BAD Is a Pro-survival Factor Prior to Activation of Its Pro-apoptotic Function. Journal of Biological Chemistry, 2004, 279, 42240-42249.	3.4	48
57	Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13590-13595.	7.1	95
58	Mitochondrial fission proteins regulate programmed cell death in yeast. Genes and Development, 2004, 18, 2785-2797.	5.9	270
59	Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnology and Bioengineering, 2004, 85, 589-600.	3.3	82
60	Mitochondrial Programmed Cell Death Pathways in Yeast. Developmental Cell, 2004, 7, 630-632.	7.0	34
61	Neuronal Apoptosis Pathways in Sindbis Virus Encephalitis. Progress in Molecular and Subcellular Biology, 2004, 36, 71-93.	1.6	5
62	Viral modulators of cell death provide new links to old pathways. Current Opinion in Cell Biology, 2003, 15, 700-705.	5.4	24
63	Cytosolic domain of the human mitochondrial fission protein fis1 adopts a TPR fold. Proteins: Structure, Function and Bioinformatics, 2003, 54, 153-156.	2.6	70
64	Viral versus cellular BCL-2 proteins. Cell Death and Differentiation, 2003, 10, S68-S76.	11.2	51
65	BAK Alters Neuronal Excitability and Can Switch from Anti- to Pro-Death Function during Postnatal Development. Developmental Cell, 2003, 4, 575-585.	7.0	101
66	Inhibition of Translation and Induction of Apoptosis by Bunyaviral Nonstructural Proteins Bearing Sequence Similarity to Reaper. Molecular Biology of the Cell, 2003, 14, 4162-4172.	2.1	67
67	Modulation of Synaptic Transmission by the BCL-2 Family Protein BCL-xL. Journal of Neuroscience, 2003, 23, 8423-8431.	3.6	95
68	Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. Journal of Clinical Investigation, 2003, 112, 109-117.	8.2	73
69	Bax-type Apoptotic Proteins Porate Pure Lipid Bilayers through a Mechanism Sensitive to Intrinsic Monolayer Curvature. Journal of Biological Chemistry, 2002, 277, 49360-49365.	3.4	210
70	Epstein-Barr Virus BALF1 Is a BCL-2-Like Antagonist of the Herpesvirus Antiapoptotic BCL-2 Proteins. Journal of Virology, 2002, 76, 2469-2479.	3.4	85
71	Inhibitor specificity of recombinant and endogenous caspase-9. Biochemical Journal, 2002, 366, 595-601.	3.7	37
72	Bax, along with Lipid Conspirators, Allows Cytochrome c to Escape Mitochondria. Molecular Cell, 2002, 10, 963-965.	9.7	41

#	Article	IF	CITATIONS
73	Inhibition of drug-induced Fas ligand transcription and apoptosis by Bcl-XL. Molecular and Cellular Biochemistry, 2001, 225, 7-20.	3.1	27
74	Pro-apoptotic Cleavage Products of Bcl-xL Form Cytochrome c-conducting Pores in Pure Lipid Membranes. Journal of Biological Chemistry, 2001, 276, 31083-31091.	3.4	134
75	Cyclin' on the viral path to destruction. Nature Cell Biology, 2000, 2, E203-E204.	10.3	11
76	Antiapoptotic Herpesvirus Bcl-2 Homologs Escape Caspase-Mediated Conversion to Proapoptotic Proteins. Journal of Virology, 2000, 74, 5024-5031.	3.4	132
77	Caspase-3-dependent Cleavage of Bcl-2 Promotes Release of Cytochrome c. Journal of Biological Chemistry, 1999, 274, 21155-21161.	3.4	390
78	Inhibition of virus-induced neuronal apoptosis by Bax. Nature Medicine, 1999, 5, 832-835.	30.7	107
79	Conversion of Bcl-2 to a Bax-like Death Effector by Caspases. Science, 1997, 278, 1966-1968.	12.6	1,028
80	Bax-independent inhibition of apoptosis by Bcl-XL. Nature, 1996, 379, 554-556.	27.8	492
81	The effects of alphavirus infection on neurons. Annals of Neurology, 1994, 35, S23-S27.	5.3	53
82	Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature, 1993, 361, 739-742.	27.8	556
83	Apoptosis: the extrinsic pathway. , 0, , 353-366.		1