Yasushi Imada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4714991/publications.pdf

Version: 2024-02-01

126907 138484 3,585 87 33 58 citations h-index g-index papers 112 112 112 2271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Noncovalent Modification Strategy with Achiral Phosphoric Acid Diesters for Designing a Chiral BrÃ,nsted Base Organocatalyst. Bulletin of the Chemical Society of Japan, 2022, 95, 553-555.	3.2	1
2	Lowâ€Voltageâ€Driven Electrochemical Aerobic Oxygenation with Flavin Catalysis: Chemoselective Synthesis of Sulfoxides from Sulfides. Advanced Synthesis and Catalysis, 2022, 364, 2443-2448.	4.3	6
3	Facile Construction of Benzofulvene Scaffold from Tetraaryl[3]cumulene Through Electrophilic lodocyclization. European Journal of Organic Chemistry, 2021, 2021, 235-238.	2.4	5
4	Two-photon excitable boron complex based on tridentate imidazo[1,5- <i>a</i> pyridine ligand for heavy-atom-free mitochondria-targeted photodynamic therapy. RSC Advances, 2021, 11, 26403-26407.	3.6	5
5	Unexpected formation of poly-functionalized fulvenes by the reaction of a tetraaryl[5]cumulene with iodine. Organic and Biomolecular Chemistry, 2021, 19, 7594-7597.	2.8	2
6	Alloxazinium-Resins as Readily Available and Reusable Oxidation Catalysts. Bulletin of the Chemical Society of Japan, 2021, 94, 1728-1730.	3.2	0
7	Effect of stereochemistry on the catalytic activity of flavopeptides. Tetrahedron Letters, 2021, 73, 153107.	1.4	4
8	Synthesis of D–π–A type benzothiazole–pyridinium salt composite and its application as photo-degradation agent for amyloid fibrils. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128324.	2.2	0
9	Synthesis of Optically Active Polyguanidines by Polyaddition Reaction of Biscarbodiimides with Chiral Diamines. ACS Omega, 2021, 6, 33215-33223.	3.5	4
10	Synthesis and Optical Properties of Quadrupolar Pyridinium Salt and Its Application as Bioimaging Agent. Chemistry Letters, 2020, 49, 1487-1489.	1.3	1
11	Two- and three-photon excitable quaternized imidazo[1,2-a]pyridines as mitochondrial imaging and potent cancer therapy agents. Organic and Biomolecular Chemistry, 2020, 18, 7571-7576.	2.8	5
12	Determination of acid dissociation constants of flavin analogues by capillary zone electrophoresis. Electrophoresis, 2020, 41, 1316-1325.	2.4	3
13	Nucleophilic Addition to Nitrones Using a Flow Microreactor. Synlett, 2020, 31, 866-870.	1.8	0
14	Visible-light-induced oxidative coupling reaction of benzylic amines using iridium(III) complex of pincer type imidazo[1,5-a]pyridine ligand. Tetrahedron Letters, 2020, 61, 151782.	1.4	7
15	An uncommon use of irradiated flavins: Brønsted acid catalysis. Chemical Communications, 2020, 56, 5661-5664.	4.1	2
16	Preparation of flavin-containing mesoporous network polymers and their catalysis. Tetrahedron Letters, 2020, 61, 151710.	1.4	5
17	Efficient Use of Photons in Photoredox/Enamine Dual Catalysis with a Peptide-Bridged Flavin–Amine Hybrid. Organic Letters, 2019, 21, 6978-6982.	4.6	13
18	Fluorescent Imidazo[1,5-a]pyridinium Salt for a Potential Cancer Therapy Agent. ACS Medicinal Chemistry Letters, 2019, 10, 1110-1114.	2.8	10

#	Article	IF	Citations
19	Suppression of protein adsorption on a graphene surface by phosphorylcholine functionalization. Japanese Journal of Applied Physics, 2019, 58, 055001.	1.5	7
20	Flavinium and Alkaliâ€Metal Assembly on Sulfated Chitin: A Heterogeneous Supramolecular Catalyst for H ₂ O ₂ â€Mediated Oxidation. ChemSusChem, 2019, 12, 1640-1645.	6.8	10
21	Synthesis and Transformations of Nitrones for Organic Synthesis. Chemical Reviews, 2019, 119, 4684-4716.	47.7	179
22	Greener Preparation of 5â€Ethylâ€4aâ€hydroxyisoalloxazine and Its Use for Catalytic Aerobic Oxygenations. European Journal of Organic Chemistry, 2019, 2019, 1791-1795.	2.4	6
23	Aggregationâ€induced Substrate Specificity in Aerobic Reduction of Olefins with Ultrasound Gel Catalyst of Synthetic Flavin. ChemCatChem, 2019, 11, 878-884.	3.7	6
24	Enzyme-like Regiodivergent Behavior of a Flavopeptide Catalyst in Aerobic Baeyer-Villiger Oxidation. Chimia, 2018, 72, 866-869.	0.6	6
25	Advanced flavin catalysts elaborated with polymers. Polymer Journal, 2018, 50, 941-949.	2.7	16
26	Synthesis of insoluble polystyreneâ€supported flavins and their catalysis in aerobic reduction of olefins. Journal of Polymer Science Part A, 2017, 55, 1706-1713.	2.3	7
27	BrÃ,nsted Acid Catalysed Aerobic Reduction of Olefins by Diimide Generated In Situ from Hydrazine. SynOpen, 2017, 01, 0011-0014.	1.7	2
28	Design of peptide-containing N5-unmodified neutral flavins that catalyze aerobic oxygenations. Chemical Science, 2017, 8, 5468-5475.	7.4	43
29	Facile Preparation of Flavinium Organocatalysts. ChemSusChem, 2016, 9, 2769-2773.	6.8	9
30	Highly Fluorescent Flavins: Rational Molecular Design for Quenching Protection Based on Repulsive and Attractive Control of Molecular Alignment. Chemistry - A European Journal, 2015, 21, 9171-9178.	3.3	5
31	Biomimetic flavin-catalysed reactions for organic synthesis. Organic and Biomolecular Chemistry, 2015, 13, 7599-7613.	2.8	103
32	Flavinâ€Functionalized Gold Nanoparticles as an Efficient Catalyst for Aerobic Organic Transformations. ChemCatChem, 2015, 7, 99-106.	3.7	16
33	Oxidation of sulfides with hydrogen peroxide catalyzed by synthetic flavin adducts with dendritic bis(acylamino)pyridines. Tetrahedron, 2014, 70, 495-501.	1.9	21
34	Ringâ€Expanding Metathesis Oligomerization of Cyclic Nitrones. European Journal of Organic Chemistry, 2014, 2014, 5670-5674.	2.4	9
35	Oxidation of Sulfides with Hydrogen Peroxide Catalyzed by Vitamin B2 Derivatives. Synthetic Communications, 2013, 43, 3064-3071.	2.1	13
36	Non-covalently dendronized flavins as organocatalysts for aerobic reduction of olefins. Tetrahedron, 2013, 69, 8572-8578.	1.9	13

#	Article	IF	Citations
37	Flavin-catalyzed aerobic oxidation of sulfides in aqueous media. Tetrahedron Letters, 2013, 54, 621-624.	1.4	44
38	Aerobic Oxidation of Sulfides with a Vitamin B2-Derived Organocatalyst. Synlett, 2013, 24, 1679-1682.	1.8	15
39	Aerobic Reduction of Olefins by In Situ Generation of Diimide with Synthetic Flavin Catalysts. Chemistry - A European Journal, 2011, 17, 5908-5920.	3.3	67
40	Neutral Flavins: Green and Robust Organocatalysts for Aerobic Hydrogenation of Olefins. Organic Letters, 2010, 12, 32-35.	4.6	70
41	Synthesis and electrochemical behavior of clothespin-shaped bisflavin compounds. Tetrahedron Letters, 2008, 49, 2523-2526.	1.4	3
42	Sequential asymmetric homoallenylation of primary amines with a palladium catalyst. Tetrahedron Letters, 2008, 49, 4915-4917.	1.4	32
43	Oxidation of sulfides with hydrogen peroxide catalyzed by 10,10′-linked bisflavinium perchlorates. Tetrahedron Letters, 2007, 48, 937-939.	1.4	32
44	Flavins as organocatalysts for environmentally benign molecular transformations. Chemical Record, 2007, 7, 354-361.	5.8	83
45	Flavin-Catalyzed Oxidation of Amines and Sulfides with Molecular Oxygen: Biomimetic Green Oxidation. Chemistry - an Asian Journal, 2006, 1, 136-147.	3.3	69
46	Flavin-Catalyzed Generation of Diimide:Â An Environmentally Friendly Method for the Aerobic Hydrogenation of Olefins. Journal of the American Chemical Society, 2005, 127, 14544-14545.	13.7	113
47	An Aerobic, Organocatalytic, and Chemoselective Method for Baeyer-Villiger Oxidation. Angewandte Chemie - International Edition, 2005, 44, 1704-1706.	13.8	141
48	An Aerobic, Organocatalytic, and Chemoselective Method for Baeyerâ€"Villiger Oxidation ChemInform, 2005, 36, no.	0.0	0
49	Palladium-Catalyzed Asymmetric Amination and Imidation of 2,3-Allenyl Phosphates. Organic Letters, 2005, 7, 5837-5839.	4.6	73
50	Flavin-Catalyzed Oxidations of Sulfides and Amines with Molecular Oxygen ChemInform, 2003, 34, no.	0.0	0
51	Flavin Catalyzed Oxidations of Sulfides and Amines with Molecular Oxygen. Journal of the American Chemical Society, 2003, 125, 2868-2869.	13.7	196
52	Palladium-Catalyzed Asymmetric Alkylation of 2,3-Alkadienyl Phosphates. Synthesis of Optically Active 2-(2,3-Alkadienyl)malonates. Chemistry Letters, 2002, 31, 140-141.	1.3	90
53	Enantioselective Addition of Ketene Silyl Acetals to Nitrones Catalyzed by Chiral Titanium Complexes. Synthesis of Optically Activeî ² -Amino Acids. Journal of the American Chemical Society, 2002, 124, 2888-2889.	13.7	83
54	Asymmetric Baeyer-Villiger Reaction with Hydrogen Peroxide Catalyzed by a Novel Planar-Chiral Bisflavin. Angewandte Chemie - International Edition, 2002, 41, 2366-2368.	13.8	184

#	Article	IF	CITATIONS
55	Asymmetric Synthesis of \hat{C}^2 -Amino Acids by Addition of Chiral Enolates to Nitrones via N-Acyloxyiminium lons. Bulletin of the Chemical Society of Japan, 2000, 73, 2423-2444.	3.2	33
56	Synthesis of Homochiral b-Sulfinyl Nitrones and Their Application for Enantioselective Synthesis of (+)-Euphococcinine. Heterocycles, 2000, 52, 557.	0.7	14
57	Highly Diastereoselective Addition of a Chiral Ketene Silyl Acetal to Nitrones: Â Asymmetric Synthesis of \hat{l}^2 -Amino Acids and Key Intermediates of \hat{l}^2 -Lactam Antibiotics. Journal of Organic Chemistry, 1999, 64, 3790-3791.	3.2	43
58	Asymmetric Synthesis of \hat{I}^2 -Amino Acids by Addition of Chiral Enolates toN-Acyloxyiminium Ions and Application for Synthesis of Optically Active 5-Substituted 8-Methylindolizidines. Organic Letters, 1999, 1, 107-110.	4.6	28
59	Regioselective Synthesis of Nitrones by Decarboxylative Oxidation of N-Alkyl-α-amino Acids and Application to the Synthesis of 1-Azabicyclic Alkaloids. Bulletin of the Chemical Society of Japan, 1999, 72, 2737-2754.	3.2	60
60	Reversal of Diastereoselectivity of the Reaction of Chiral Boron and Titanium Enolates with NitronesviaN-Acyloxyiminium Intermediates. Asymmetric Synthesis of Diastereomericl $\hat{1}$ -Substitutedl $\hat{1}$ -Amino Acids. Chemistry Letters, 1999, 28, 795-796.	1.3	11
61	Synthesis of (R)- and (S)-3-(tert-butyldimethylsilyloxy)-1-pyrroline N-oxides — chiral nitrones for synthesis of biologically active pyrrolidine derivative, Geissman-Waiss lactone. Tetrahedron Letters, 1998, 39, 2765-2766.	1.4	21
62	Palladium-catalyzed asymmetric alkoxycarbonylation of allyl phosphates. Tetrahedron Letters, 1997, 38, 8227-8230.	1.4	24
63	Palladium-Catalyzed Carbonylation of Propargylamines. Selective Insertion of Carbon Monoxide into a Carbonâ^'Nitrogen Bond. Journal of Organic Chemistry, 1996, 61, 6766-6767.	3.2	41
64	Palladium-Catalyzed Regioselective Carbonylation of 2,3-Dienylamines to $\hat{l}\pm$ -Vinylacrylamides. Journal of Organic Chemistry, 1996, 61, 7982-7983.	3.2	35
65	Palladium-Catalyzed Double and Single Carbonylations of ² -Amino Alcohols. Selective Synthesis of Morpholine-2,3-diones and Oxazolidin-2-ones and Applications for Synthesis of ±-Oxo Carboxylic Acids. Bulletin of the Chemical Society of Japan, 1996, 69, 2079-2090.	3.2	55
66	Palladium-catalyzed Carbonylation of Allylamines. Synthesis of \hat{l}^2 , \hat{l}^3 -unsaturated amides by one-carbon homologation of Allylamines. Tetrahedron, 1994, 50, 453-464.	1.9	73
67	Tungstate-Catalyzed Decarboxylative Oxidation of N-Alkylalphaamino Acids: An Efficient Method for Regioselective Synthesis of Nitrones. Journal of Organic Chemistry, 1994, 59, 6170-6172.	3.2	66
68	Copper(I)-Catalyzed Amination of Propargyl Esters. Selective Synthesis of Propargylamines, 1-Alken-3-ylamines, and (Z)-Allylamines. Journal of Organic Chemistry, 1994, 59, 2282-2284.	3.2	223
69	Titanium(III)-Induced Transformation of Hydroxylamines to Imines or Secondary Amines. Bulletin of the Chemical Society of Japan, 1994, 67, 2542-2549.	3.2	20
70	Aza- and oxacarbonylations of allyl phosphates catalyzed by rhodium carbonyl cluster. Selective synthesis of \hat{l}^2 , \hat{l}^3 -unsaturated amides, esters, and acids. Journal of Organometallic Chemistry, 1993, 451, 183-194.	1.8	23
71	Palladium(0)-catalyzed alkoxycarbonylation of allyl phosphates and acetates. Journal of Organic Chemistry, 1993, 58, 1538-1545.	3.2	94
72	Osmium-catalyzed asymmetric dihydroxylation of olefins using chiral isoxazolidine ligands. Tetrahedron Letters, 1992, 33, 5081-5084.	1.4	30

#	Article	IF	CITATIONS
73	Palladium and Rhodium Catalyzed Carbonylation. Carbonylation of Allylic Compounds and Cross Double Carbonylation of Amines and Alcohols Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1991, 49, 919-927.	0.1	4
74	New reagents. X. Reagents for functionalization. N-methylphenylaminophosphonium iodide Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1990, 48, 1056-1057.	0.1	2
7 5	Palladium(0)-catalyzed azidation of allyl esters. Selective synthesis of allyl azides, primary allylamines, and related compounds. Journal of Organic Chemistry, 1989, 54, 3292-3303.	3.2	192
76	Rhodium Catalyzed Hydrogenation of Quinolines and Isoquinolines under Water-Gas Shift Conditions. Bulletin of the Chemical Society of Japan, 1989, 62, 2968-2976.	3.2	44
77	Palladium(0)-catalyzed carbonylation of allyl phosphates and allyl acetates. Selective synthesis of \hat{l}^2 , \hat{l}^3 -unsaturated esters. Tetrahedron Letters, 1988, 29, 4945-4948.	1.4	70
78	Palladium(o)-catalyzed hydroxylamination of allyl esters. Tetrahedron Letters, 1988, 29, 2973-2976.	1.4	58
79	Palladium-catalysed carbonylation of allylamines. Journal of the Chemical Society Chemical Communications, 1988, , 1578.	2.0	49
80	Rhodium catalyzed hydrogenation of nitrogen heteroaromatics under water gas shift conditions. Selective synthesis of 1,2,3,4-tetrahydroquinolines and -formyl-1,2,3,4-tetrahydroisoquinolines. Tetrahedron Letters, 1987, 28, 77-80.	1.4	44
81	Palladium(O) catalyzed azidation and amination of allyl acetates. Selective synthesis of allyl azides and primary allylamines. Tetrahedron Letters, 1986, 27, 227-230.	1.4	62
82	cis-Oxypalladation Complexes Derived from $(1R,5R)-2(10),3$ -Pinadiene and Their Utilization in Pd(II)-catalyzed Enantioselective Cyclization of 2-(trans-2-Butenyl)phenols. Bulletin of the Chemical Society of Japan, 1985, 58, 3282-3290.	3.2	23
83	RHODIUM-CATALYZED AZACARBONYLATION OF ALLYL PHOSPHATES. THE PREPARATION OF \hat{l}^2 , \hat{l}^3 -UNSATURATED AMIDES FROM ALLYL ALCOHOLS. Chemistry Letters, 1985, 14, 1477-1480.	1.3	23
84	Palladium(II)-catalysed oxidative ring cleavage of cyclic acetals with t-butyl hydroperoxide: preparation of monoesters of diols. Journal of the Chemical Society Chemical Communications, 1983, , 1245.	2.0	50
85	cis-oxypalladation complexes of a pinene derivative. Tetrahedron Letters, 1982, 23, 3373-3374.	1.4	13
86	The Tsuji–Trost Reaction and Related Carbon–Carbon Bond Formation Reactions: Palladium-Catalyzed Substitution Reactions of Nitrogen and Other Group 15 Atom-Containing Allylic Derivatives. , 0, , 1817-1825.		1
87	Effect of Phenolic Substituent Position in Boron Complexes of Imidazo[1,5â€a]pyridine. Asian Journal of Organic Chemistry, 0, , .	2.7	2