


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713987/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009, 324, 1312-1314.                                                                                                                                                   | 12.6 | 10,000    |
| 2  | Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 2008, 319, 1229-1232.                                                                                                                                                                | 12.6 | 4,504     |
| 3  | A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72-123.                                                                                                                                                                          | 6.1  | 2,318     |
| 4  | N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science, 2009, 324, 768-771.                                                                                                                                                                  | 12.6 | 2,020     |
| 5  | Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry<br>A, 2015, 3, 2485-2534.                                                                                                                                      | 10.3 | 1,609     |
| 6  | Cocatalysts for Selective Photoreduction of CO <sub>2</sub> into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.                                                                                                                                             | 47.7 | 1,591     |
| 7  | Hierarchical photocatalysts. Chemical Society Reviews, 2016, 45, 2603-2636.                                                                                                                                                                                       | 38.1 | 1,517     |
| 8  | Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.                                                                                                                                                                                                 | 10.0 | 836       |
| 9  | CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015, 5, 1500010.                                                                                                                                                                           | 19.5 | 694       |
| 10 | Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.                                                                                                                                    | 14.0 | 458       |
| 11 | Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 2014, 57, 70-100.                                                                                                               | 6.3  | 446       |
| 12 | Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 53-107.                                                                                                                                                                         | 6.1  | 386       |
| 13 | A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese Journal of Catalysis, 2022, 43, 178-214.                                                                                          | 14.0 | 382       |
| 14 | A review on 2D MoS2 cocatalysts in photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56, 89-121.                                                                                                                                   | 10.7 | 364       |
| 15 | A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries.<br>Nano Letters, 2015, 15, 5137-5142.                                                                                                                        | 9.1  | 358       |
| 16 | Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state<br>Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Applied Surface Science, 2017, 405, 60-70.                                                                        | 6.1  | 328       |
| 17 | Constructing Multifunctional Metallic Ni Interface Layers in the g-C <sub>3</sub> N <sub>4</sub><br>Nanosheets/Amorphous NiS Heterojunctions for Efficient Photocatalytic H <sub>2</sub> Generation.<br>ACS Applied Materials & Interfaces, 2017, 9, 14031-14042. | 8.0  | 319       |
| 18 | Enhanced photocatalytic H <sub>2</sub> evolution over noble-metal-free NiS cocatalyst modified CdS<br>nanorods/g-C <sub>3</sub> N <sub>4</sub> heterojunctions. Journal of Materials Chemistry A, 2015, 3,<br>18244-18255.                                        | 10.3 | 306       |

| #  | Article                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chemical Engineering Journal, 2012, 180, 151-158.                                                                                 | 12.7 | 302       |
| 20 | Constructing 2D layered hybrid CdS nanosheets/MoS 2 heterojunctions for enhanced visible-light photocatalytic H 2 generation. Applied Surface Science, 2017, 391, 580-591.                                                                                                                                              | 6.1  | 284       |
| 21 | Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China Materials, 2020, 63, 2153-2188.                                                                                                                                                                                                   | 6.3  | 281       |
| 22 | Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42, 25-36.                                                                                                                                   | 14.0 | 272       |
| 23 | A new heterojunction in photocatalysis: S-scheme heterojunction. Chinese Journal of Catalysis, 2021, 42, 667-669.                                                                                                                                                                                                       | 14.0 | 260       |
| 24 | In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for<br>shell-thickness-dependent photocatalytic H2 production. Applied Catalysis B: Environmental, 2021, 291,<br>120104.                                                                                                         | 20.2 | 258       |
| 25 | Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 227, 218-228.                                                                                                                                | 20.2 | 248       |
| 26 | Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chinese Journal of Catalysis, 2022, 43, 359-369.                                                                                                                  | 14.0 | 246       |
| 27 | Bifunctional Cu <sub>3</sub> P Decorated g-C <sub>3</sub> N <sub>4</sub> Nanosheets as a Highly<br>Active and Robust Visible-Light Photocatalyst for H <sub>2</sub> Production. ACS Sustainable<br>Chemistry and Engineering, 2018, 6, 4026-4036.                                                                       | 6.7  | 243       |
| 28 | Multi-functional Ni <sub>3</sub> C cocatalyst/g-C <sub>3</sub> N <sub>4</sub> nanoheterojunctions<br>for robust photocatalytic H <sub>2</sub> evolution under visible light. Journal of Materials<br>Chemistry A, 2018, 6, 13110-13122.                                                                                 | 10.3 | 241       |
| 29 | Ni-based photocatalytic H2-production cocatalysts2. Chinese Journal of Catalysis, 2019, 40, 240-288.                                                                                                                                                                                                                    | 14.0 | 239       |
| 30 | Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH) cocatalysts. Chinese Journal of Catalysis, 2017, 38, 240-252.                                                                                                                         | 14.0 | 237       |
| 31 | Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight. Journal of Materials Science and Technology, 2022, 123, 177-190.                                                           | 10.7 | 232       |
| 32 | <i>In situ</i> construction of a C <sub>3</sub> N <sub>5</sub><br>nanosheet/Bi <sub>2</sub> WO <sub>6</sub> nanodot S-scheme heterojunction with enhanced<br>structural defects for the efficient photocatalytic removal of tetracycline and Cr( <scp>vi</scp> ).<br>Inorganic Chemistry Frontiers, 2022, 9, 2479-2497. | 6.0  | 217       |
| 33 | Fabricating the Robust g-C <sub>3</sub> N <sub>4</sub> Nanosheets/Carbons/NiS Multiple<br>Heterojunctions for Enhanced Photocatalytic H <sub>2</sub> Generation: An Insight into the<br>Trifunctional Roles of Nanocarbons. ACS Sustainable Chemistry and Engineering, 2017, 5, 2224-2236.                              | 6.7  | 214       |
| 34 | Design and application of active sites in g-C3N4-based photocatalysts. Journal of Materials Science and Technology, 2020, 56, 69-88.                                                                                                                                                                                    | 10.7 | 211       |
| 35 | Amorphous Co <sub>3</sub> O <sub>4</sub> modified CdS nanorods with enhanced visible-light photocatalytic H <sub>2</sub> -production activity. Dalton Transactions, 2015, 44, 1680-1689.                                                                                                                                | 3.3  | 204       |
| 36 | In situ one-pot fabrication of g-C 3 N 4 nanosheets/NiS cocatalyst heterojunction with intimate<br>interfaces for efficient visible light photocatalytic H 2 generation. Applied Surface Science, 2018, 430,<br>208-217.                                                                                                | 6.1  | 204       |

| #  | Article                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous<br>NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Applied Surface Science, 2015, 358,<br>204-212.                                                                              | 6.1  | 203       |
| 38 | Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting<br>visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chemical Engineering Journal,<br>2022, 428, 131158.                                                                              | 12.7 | 203       |
| 39 | Enhanced Solar Fuel H <sub>2</sub> Generation over g-C <sub>3</sub> N <sub>4</sub> Nanosheet<br>Photocatalysts by the Synergetic Effect of Noble Metal-Free Co <sub>2</sub> P Cocatalyst and the<br>Environmental Phosphorylation Strategy. ACS Sustainable Chemistry and Engineering, 2018, 6, 816-826. | 6.7  | 201       |
| 40 | Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS<br>nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. Applied Catalysis B:<br>Environmental, 2020, 266, 118619.                                                                       | 20.2 | 199       |
| 41 | Two-Dimensional Transition Metal MXene-Based Photocatalysts for Solar Fuel Generation. Journal of<br>Physical Chemistry Letters, 2019, 10, 3488-3494.                                                                                                                                                    | 4.6  | 193       |
| 42 | Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic<br>H2 evolution over g-C3N4/MoS2 layered heterojunctions. Applied Catalysis B: Environmental, 2019, 252,<br>250-259.                                                                                 | 20.2 | 188       |
| 43 | Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions. Chinese Journal of Catalysis, 2020, 41, 31-40.                                                                                                                                                  | 14.0 | 177       |
| 44 | In Situ Fabrication of Robust Cocatalystâ€Free CdS/g <sub>3</sub> N <sub>4</sub> 2D–2D Stepâ€6cheme<br>Heterojunctions for Highly Active H <sub>2</sub> Evolution. Solar Rrl, 2020, 4, 1900423.                                                                                                          | 5.8  | 176       |
| 45 | Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 390, 124496.                                                                                                             | 12.7 | 174       |
| 46 | Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental<br>Science and Engineering, 2018, 12, 1.                                                                                                                                                                     | 6.0  | 170       |
| 47 | Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 2019, 471, 43-87.                                                                                                                                                                                             | 6.1  | 170       |
| 48 | Encapsulation of Ni <sub>3</sub> Fe Nanoparticles in Nâ€Doped Carbon Nanotube–Grafted Carbon<br>Nanofibers as Highâ€Efficiency Hydrogen Evolution Electrocatalysts. Advanced Functional Materials,<br>2018, 28, 1805828.                                                                                 | 14.9 | 168       |
| 49 | Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable<br>bio-oils to second generation biofuels. Renewable and Sustainable Energy Reviews, 2018, 82, 3762-3797.                                                                                                 | 16.4 | 164       |
| 50 | Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catalysis Today, 2014, 225, 64-73.                                                                                                                                                                                           | 4.4  | 159       |
| 51 | Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution.<br>Journal of Materials Science and Technology, 2022, 118, 15-24.                                                                                                                                         | 10.7 | 159       |
| 52 | Porous graphitic carbon nitride for solar photocatalytic applications. Nanoscale Horizons, 2020, 5,<br>765-786.                                                                                                                                                                                          | 8.0  | 152       |
| 53 | C <sub>60</sub> -Decorated CdS/TiO <sub>2</sub> Mesoporous Architectures with Enhanced<br>Photostability and Photocatalytic Activity for H <sub>2</sub> Evolution. ACS Applied Materials &<br>Interfaces, 2015, 7, 4533-4540.                                                                            | 8.0  | 148       |
| 54 | Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation.<br>Journal of Natural Gas Chemistry, 2011, 20, 413-417.                                                                                                                                                  | 1.8  | 145       |

| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Synthesis, properties, and applications of black titanium dioxide nanomaterials. Science Bulletin, 2017, 62, 431-441.                                                                                                                                                       | 9.0  | 134       |
| 56 | Low-Cost Ni <sub>3</sub> B/Ni(OH) <sub>2</sub> as an Ecofriendly Hybrid Cocatalyst for Remarkably<br>Boosting Photocatalytic H <sub>2</sub> Production over g-C <sub>3</sub> N <sub>4</sub> Nanosheets.<br>ACS Sustainable Chemistry and Engineering, 2018, 6, 13140-13150. | 6.7  | 131       |
| 57 | Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible<br>light irradiation. Journal of Natural Gas Chemistry, 2011, 20, 145-150.                                                                                                 | 1.8  | 127       |
| 58 | Graphitic carbon nitride nanosheets for microwave absorption. Materials Today Physics, 2018, 5, 78-86.                                                                                                                                                                      | 6.0  | 127       |
| 59 | Improved visible-light photocatalytic H2 generation over CdS nanosheets decorated by NiS2 and<br>metallic carbon black as dual earth-abundant cocatalysts. Chinese Journal of Catalysis, 2017, 38,<br>1970-1980.                                                            | 14.0 | 124       |
| 60 | Earth-abundant NiS co-catalyst modified metal-free mpg-C <sub>3</sub> N <sub>4</sub> /CNT<br>nanocomposites for highly efficient visible-light photocatalytic H <sub>2</sub> evolution. Dalton<br>Transactions, 2015, 44, 18260-18269.                                      | 3.3  | 123       |
| 61 | Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chemical Engineering Journal, 2022, 429, 132587.                                                                          | 12.7 | 121       |
| 62 | Co1.4Ni0.6P cocatalysts modified metallic carbon black/g-C3N4 nanosheet Schottky heterojunctions for active and durable photocatalytic H2 production. Applied Surface Science, 2019, 466, 393-400.                                                                          | 6.1  | 117       |
| 63 | Tracking Sâ€ <del>S</del> cheme Charge Transfer Pathways in Mo <sub>2</sub> C/CdS H <sub>2</sub> â€Evolution<br>Photocatalysts. Solar Rrl, 2021, 5, 2100177.                                                                                                                | 5.8  | 117       |
| 64 | Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Applied Surface Science, 2015, 358, 425-435.                                                                                         | 6.1  | 115       |
| 65 | Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H <sub>2</sub> production over g-C <sub>3</sub> N <sub>4</sub> nanosheets under visible light. Catalysis Science and Technology, 2017, 7, 1193-1202.        | 4.1  | 114       |
| 66 | Reduced Graphene Oxideâ€Modified Carbon Nanotube/Polyimide Film Supported MoS <sub>2</sub><br>Nanoparticles for Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2015, 25,<br>2693-2700.                                                                 | 14.9 | 113       |
| 67 | Markedly enhanced visible-light photocatalytic H <sub>2</sub> generation over<br>g-C <sub>3</sub> N <sub>4</sub> nanosheets decorated by robust nickel phosphide<br>(Ni <sub>12</sub> P <sub>5</sub> ) cocatalysts. Dalton Transactions, 2017, 46, 1794-1802.               | 3.3  | 111       |
| 68 | Improved charge transfer by size-dependent plasmonic Au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction. Chinese Journal of Catalysis, 2019, 40, 928-939.                                                                                           | 14.0 | 104       |
| 69 | Heterogeneous Photocatalytic Activation of Persulfate for the Removal of Organic Contaminants in<br>Water: A Critical Review. ACS ES&T Engineering, 2022, 2, 527-546.                                                                                                       | 7.6  | 101       |
| 70 | Effects of pore sizes of porous silica gels on desorption activation energy of water vapour. Applied<br>Thermal Engineering, 2007, 27, 869-876.                                                                                                                             | 6.0  | 99        |
| 71 | Molecularly imprinted Ag/Ag3VO4/g-C3N4 Z-scheme photocatalysts for enhanced preferential removal of tetracycline. Journal of Colloid and Interface Science, 2019, 552, 271-286.                                                                                             | 9.4  | 98        |
| 72 | Carbon Nanotube-Supported Cu <sub>3</sub> P as High-Efficiency and Low-Cost Cocatalysts for<br>Exceptional Semiconductor-Free Photocatalytic H <sub>2</sub> Evolution. ACS Sustainable Chemistry<br>and Engineering, 2019, 7, 3243-3250.                                    | 6.7  | 96        |

| #  | Article                                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Carbon–Graphitic Carbon Nitride Hybrids for Heterogeneous Photocatalysis. Small, 2021, 17, e2005231.                                                                                                                                                                                                            | 10.0 | 96        |
| 74 | Microwave absorbing property and complex permittivity and permeability of epoxy composites<br>containing Ni-coated and Ag filled carbon nanotubes. Composites Science and Technology, 2008, 68,<br>2902-2908.                                                                                                   | 7.8  | 95        |
| 75 | Efficient visible-light photocatalytic H <sub>2</sub> evolution over metal-free<br>g-C <sub>3</sub> N <sub>4</sub> co-modified with robust acetylene black and Ni(OH) <sub>2</sub> as<br>dual co-catalysts. RSC Advances, 2016, 6, 31497-31506.                                                                 | 3.6  | 94        |
| 76 | ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution. Journal of Materials Science and Technology, 2022, 122, 231-242.                                                                                                                                                                | 10.7 | 93        |
| 77 | Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide<br>CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution. Journal of<br>Materials Science and Technology, 2022, 112, 85-95.                                                             | 10.7 | 92        |
| 78 | Bridging the g-C <sub>3</sub> N <sub>4</sub> Nanosheets and Robust CuS Cocatalysts by Metallic<br>Acetylene Black Interface Mediators for Active and Durable Photocatalytic H <sub>2</sub><br>Production. ACS Applied Energy Materials, 2018, 1, 2232-2241.                                                     | 5.1  | 88        |
| 79 | Catalytic oxidation of toluene over copper and manganese based catalysts: Effect of water vapor.<br>Catalysis Communications, 2011, 14, 15-19.                                                                                                                                                                  | 3.3  | 87        |
| 80 | Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2 with<br>air/cumene hydroperoxide under ambient conditions. Applied Catalysis B: Environmental, 2016, 192,<br>72-79.                                                                                                        | 20.2 | 87        |
| 81 | State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale, 2021, 13, 9463-9504.                                                                                                                                                                                         | 5.6  | 87        |
| 82 | Construction of a multi-interfacial-electron transfer scheme for efficient CO <sub>2</sub><br>photoreduction: a case study using CdIn <sub>2</sub> S <sub>4</sub> micro-flower spheres modified<br>with Au nanoparticles and reduced graphene oxide. Journal of Materials Chemistry A, 2020, 8,<br>18707-18714. | 10.3 | 86        |
| 83 | Synthesis of porous ZnS, ZnO and ZnS/ZnO nanosheets and their photocatalytic properties. RSC<br>Advances, 2017, 7, 30956-30962.                                                                                                                                                                                 | 3.6  | 85        |
| 84 | Ultra-thin SiC layer covered graphene nanosheets as advanced photocatalysts for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 10999-11005.                                                                                                                                                     | 10.3 | 80        |
| 85 | Bridging Effect of S–C Bond for Boosting Electron Transfer over Cubic Hollow<br>CoS/g-C <sub>3</sub> N <sub>4</sub> Heterojunction toward Photocatalytic Hydrogen Production.<br>Langmuir, 2022, 38, 3244-3256.                                                                                                 | 3.5  | 78        |
| 86 | Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D<br>printing of high internal phase Pickering emulsions. Journal of Colloid and Interface Science, 2019,<br>545, 104-115.                                                                                 | 9.4  | 76        |
| 87 | Metal-free carbon nanotube–SiC nanowire heterostructures with enhanced photocatalytic<br>H <sub>2</sub> evolution under visible light irradiation. Catalysis Science and Technology, 2015, 5,<br>2798-2806.                                                                                                     | 4.1  | 74        |
| 88 | Fabricated rGO-modified Ag2S nanoparticles/g-C3N4 nanosheets photocatalyst for enhancing photocatalytic activity. Journal of Colloid and Interface Science, 2019, 554, 468-478.                                                                                                                                 | 9.4  | 74        |
| 89 | Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation. Journal of Solid State Chemistry, 2013, 203, 154-159.                                                                                                                  | 2.9  | 73        |
| 90 | Synthesis and visible light photocatalytic behavior of WO3 (core)/Bi2WO6 (shell). Journal of<br>Molecular Catalysis A, 2014, 385, 106-111.                                                                                                                                                                      | 4.8  | 73        |

| #   | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chinese Journal of Catalysis, 2021, 42, 872-903.                                                                                           | 14.0 | 73        |
| 92  | Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production. Applied Catalysis B: Environmental, 2018, 229, 8-14.                                                                                                         | 20.2 | 72        |
| 93  | Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chemical Engineering Journal, 2013, 219, 86-95.                                                    | 12.7 | 68        |
| 94  | Hydrothermal synthesis of FeWO4-graphene composites and their photocatalytic activities under visible light. Applied Surface Science, 2015, 351, 474-479.                                                                                                               | 6.1  | 68        |
| 95  | One-pot hydrothermal synthesis of SrTiO3-reduced graphene oxide composites with enhanced photocatalytic activity for hydrogen production. Journal of Molecular Catalysis A, 2016, 423, 70-76.                                                                           | 4.8  | 65        |
| 96  | BiVO4/TiO2 heterojunction with enhanced photocatalytic activities and photoelectochemistry performances under visible light illumination. Materials Research Bulletin, 2019, 117, 35-40.                                                                                | 5.2  | 64        |
| 97  | Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes.<br>Applied Surface Science, 2009, 255, 8624-8628.                                                                                                                      | 6.1  | 63        |
| 98  | Enhanced enzymatic hydrolysis of sugarcane bagasse with ferric chloride pretreatment and surfactant. Bioresource Technology, 2017, 229, 96-103.                                                                                                                         | 9.6  | 63        |
| 99  | Facile Construction of Dual p–n Junctions in CdS/Cu <sub>2</sub> 0/ZnO Photoanode with Enhanced<br>Charge Carrier Separation and Transfer Ability. ACS Omega, 2017, 2, 852-863.                                                                                         | 3.5  | 62        |
| 100 | Assembling Ti3C2 MXene into ZnIn2S4-NiSe2 S-scheme heterojunction with multiple charge transfer channels for accelerated photocatalytic H2 generation. Chemical Engineering Journal, 2022, 447, 137488.                                                                 | 12.7 | 62        |
| 101 | Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresource Technology, 2018, 258, 295-301.                                                                                                      | 9.6  | 61        |
| 102 | Fabrication of hierarchical copper sulfide/bismuth tungstate p-n heterojunction with<br>two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of<br>glyphosate. Journal of Colloid and Interface Science, 2020, 560, 293-302. | 9.4  | 59        |
| 103 | Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production. Chinese Journal of Catalysis, 2022, 43, 507-518.                                                                                                     | 14.0 | 59        |
| 104 | Rational Construction of Strongly Coupled Metal–Metal Oxide–Graphene Nanostructure with<br>Excellent Electrocatalytic Activity and Durability. ACS Applied Materials & Interfaces, 2014, 6,<br>10258-10264.                                                             | 8.0  | 57        |
| 105 | Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin–carbohydrates complexes. Bioresource Technology, 2015, 192, 471-477.                                                                                   | 9.6  | 54        |
| 106 | Carbon-coated Cu-TiO2 nanocomposite with enhanced photostability and photocatalytic activity.<br>Applied Surface Science, 2019, 466, 254-261.                                                                                                                           | 6.1  | 54        |
| 107 | Electrodeposition of Cu2O/g-C3N4 heterojunction film on an FTO substrate for enhancing visible light photoelectrochemical water splitting. Chinese Journal of Catalysis, 2017, 38, 365-371.                                                                             | 14.0 | 51        |
| 108 | One-pot synthesis of ZnS nanowires/Cu <sub>7</sub> S <sub>4</sub> nanoparticles/reduced graphene<br>oxide nanocomposites for supercapacitor and photocatalysis applications. Dalton Transactions, 2019,<br>48, 2442-2454.                                               | 3.3  | 46        |

| #   | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects. Talanta, 2021, 235, 122726.                                                                                                                                         | 5.5  | 46        |
| 110 | Synthesis and characterization of Ag/TiO2-B nanosquares with high photocatalytic activity under visible light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 344-348.                                               | 3.5  | 45        |
| 111 | Constructing 1D/2D Schottky-Based Heterojunctions between<br>Mn <sub>0.2</sub> Cd <sub>0.8</sub> S Nanorods and<br>Ti <sub>3</sub> C <sub>2</sub> Nanosheets for Boosted Photocatalytic<br>H<:sub&et2<:/sub>: Evolution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica. 2020 | 4.9  | 44        |
| 112 | Synthesis BiVO4 modified by CuO supported onto bentonite for molecular oxygen photocatalytic oxidative desulfurization of fuel under visible light. Fuel, 2021, 290, 120066.                                                                                                     | 6.4  | 39        |
| 113 | Covalent organic frameworks: Fundamentals, mechanisms, modification, and applications in photocatalysis. Chem Catalysis, 2022, 2, 2157-2228.                                                                                                                                     | 6.1  | 39        |
| 114 | Topological morphology conversion towards SnO <sub>2</sub> /SiC hollow sphere nanochains with efficient photocatalytic hydrogen evolution. Chemical Communications, 2014, 50, 1070-1073.                                                                                         | 4.1  | 37        |
| 115 | Constructed Z-Scheme g-C <sub>3</sub> N <sub>4</sub> /Ag <sub>3</sub> VO <sub>4</sub> /rGO<br>Photocatalysts with Multi-interfacial Electron-Transfer Paths for High Photoreduction of<br>CO <sub>2</sub> . Inorganic Chemistry, 2021, 60, 1755-1766.                            | 4.0  | 37        |
| 116 | Intensive photocatalytic activity enhancement of Bi 5 O 7 I via coupling with band structure and content adjustable BiOBr x I 1â~ x. Science Bulletin, 2018, 63, 219-227.                                                                                                        | 9.0  | 36        |
| 117 | Effects of ferric chloride pretreatment and surfactants on the sugar production from sugarcane bagasse. Bioresource Technology, 2018, 265, 93-101.                                                                                                                               | 9.6  | 36        |
| 118 | Dynamics and isotherms of water vapor sorption on mesoporous silica gels modified by different salts. Kinetics and Catalysis, 2010, 51, 754-761.                                                                                                                                 | 1.0  | 35        |
| 119 | Synthesis of yolk/shell Fe3O4–polydopamine–graphene–Pt nanocomposite with high electrocatalytic<br>activity for fuel cells. Journal of Power Sources, 2014, 246, 868-875.                                                                                                        | 7.8  | 35        |
| 120 | Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light driven H2 evolution. International Journal of Hydrogen Energy, 2017, 42, 928-937.                                                                                              | 7.1  | 35        |
| 121 | Adsorption Equilibrium and Desorption Activation Energy of Water Vapor on Activated Carbon<br>Modified by an Oxidation and Reduction Treatment. Journal of Chemical & Engineering Data, 2010,<br>55, 3164-3169.                                                                  | 1.9  | 34        |
| 122 | Graphitied carbon-coated bimetallic FeCu nanoparticles as original g-C3N4 cocatalysts for improving photocatalystic activity. Applied Surface Science, 2019, 492, 571-578.                                                                                                       | 6.1  | 34        |
| 123 | Branch-like Cd Zn1-Se/Cu2O@Cu step-scheme heterojunction for CO2 photoreduction. Materials Today Physics, 2022, 26, 100729.                                                                                                                                                      | 6.0  | 31        |
| 124 | Photocatalytic Hydrogen Production over CdS Nanomaterials: An Interdisciplinary Experiment for<br>Introducing Undergraduate Students to Photocatalysis and Analytical Chemistry. Journal of Chemical<br>Education, 2019, 96, 1224-1229.                                          | 2.3  | 30        |
| 125 | Highly active and selective hydrodeoxygenation of oleic acid to second generation bio-diesel over<br>SiO2-supported CoxNi1â^'xP catalysts. Fuel, 2019, 247, 26-35.                                                                                                               | 6.4  | 29        |
| 126 | Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on<br>Ti2CT -MXenes for highly selective CO2 electrochemical reduction. Chinese Journal of Catalysis, 2022,<br>43, 1906-1917.                                                     | 14.0 | 29        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Intersubunit Electron Transfer (IET) in Quantum Dots/Graphene Complex: What Features Does IET<br>Endow the Complex with?. Journal of Physical Chemistry C, 2012, 116, 15833-15838.                                                              | 3.1  | 28        |
| 128 | G-C3N4 quantum dots and Au nano particles co-modified CeO2/Fe3O4 micro-flowers photocatalyst for enhanced CO2 photoreduction. Renewable Energy, 2021, 179, 756-765.                                                                             | 8.9  | 28        |
| 129 | Facile synthesis of oil-soluble Fe3O4 nanoparticles based on a phase transfer mechanism. Applied<br>Surface Science, 2014, 307, 306-310.                                                                                                        | 6.1  | 27        |
| 130 | Redox shuttle enhances nonthermal femtosecond two-photon self-doping of rGO–TiO <sub>2â^'x</sub><br>photocatalysts under visible light. Journal of Materials Chemistry A, 2018, 6, 16430-16438.                                                 | 10.3 | 27        |
| 131 | Synthesized Z-scheme photocatalyst ZnO/g-C3N4 for enhanced photocatalytic reduction of CO2. New<br>Journal of Chemistry, 2020, 44, 16390-16399.                                                                                                 | 2.8  | 26        |
| 132 | Smartphone-based photoelectrochemical biosensing system with graphitic carbon nitride/gold nanoparticles modified electrodes for matrix metalloproteinase-2 detection. Biosensors and Bioelectronics, 2021, 193, 113572.                        | 10.1 | 26        |
| 133 | Effects of Textural Properties and Surface Oxygen Content of Activated Carbons on the Desorption Activation Energy of Water. Adsorption Science and Technology, 2006, 24, 363-374.                                                              | 3.2  | 25        |
| 134 | Heterostructured CoO/3D-TiO2 nanorod arrays for photoelectrochemical water splitting hydrogen production. Journal of Solid State Electrochemistry, 2017, 21, 455-461.                                                                           | 2.5  | 25        |
| 135 | Principle and surface science of photocatalysis. Interface Science and Technology, 2020, 31, 1-38.                                                                                                                                              | 3.3  | 24        |
| 136 | Enhancement of photocatalytic NO removal activity of g-C <sub>3</sub> N <sub>4</sub> by modification with illite particles. Environmental Science: Nano, 2020, 7, 1990-1998.                                                                    | 4.3  | 23        |
| 137 | Photodeposition of NiS Cocatalysts on gâ€C <sub>3</sub> N <sub>4</sub> with Edge Grafting of<br>4â€(1Hâ€Imidazolâ€2â€yl) Benzoic Acid for Highly Elevated Photocatalytic H <sub>2</sub> Evolution. Advanced<br>Sustainable Systems, 2023, 7, .  | 5.3  | 23        |
| 138 | Single-crystalline melem (C <sub>6</sub> N <sub>10</sub> H <sub>6</sub> ) nanorods: a novel stable<br>molecular crystal photocatalyst with modulated charge potentials and dynamics. Journal of<br>Materials Chemistry A, 2019, 7, 13234-13241. | 10.3 | 22        |
| 139 | Engineering 2D multi-hetero-interface in the well-designed nanosheet composite photocatalyst with<br>broad electron-transfer channels for highly-efficient solar-to-fuels conversion. Applied Catalysis B:<br>Environmental, 2021, 286, 119944. | 20.2 | 22        |
| 140 | Equilibrium and Doâ^'Do Model Fitting of Water Adsorption on Four Commercial Activated Carbons<br>with Different Surface Chemistry and Pore Structure. Journal of Chemical & Engineering Data,<br>2010, 55, 5729-5732.                          | 1.9  | 21        |
| 141 | Rational design of Z-scheme Bi12O17Cl2/plasmonic Ag/anoxic TiO2 composites for efficient visible light photocatalysis. Powder Technology, 2021, 384, 342-352.                                                                                   | 4.2  | 20        |
| 142 | Urea-induced supramolecular self-assembly strategy to synthesize wrinkled porous carbon nitride<br>nanosheets for highly-efficient visible-light photocatalytic degradation. RSC Advances, 2021, 11,<br>23459-23470.                            | 3.6  | 19        |
| 143 | Novel 3-D nanoporous graphitic-C3N4 nanosheets with heterostructured modification for efficient visible-light photocatalytic hydrogen production. RSC Advances, 2014, 4, 52332-52337.                                                           | 3.6  | 18        |
| 144 | Preparation of W and N, S-codoped titanium dioxide with enhanced photocatalytic activity under visible light irradiation. Materials Research Bulletin, 2016, 76, 72-78.                                                                         | 5.2  | 18        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Facile preparation of biocompatible poly(l-lactic acid)-modified halloysite<br>nanotubes/poly(Îμ-caprolactone) porous scaffolds by solvent evaporation of Pickering emulsion<br>templates. Journal of Materials Science, 2018, 53, 14774-14788. | 3.7 | 18        |
| 146 | Fabricating intramolecular donor-acceptor system via covalent bonding of carbazole to carbon<br>nitride for excellent photocatalytic performance towards CO2 conversion. Journal of Colloid and<br>Interface Science, 2021, 594, 550-560.       | 9.4 | 18        |
| 147 | Photocatalytic Reduction of CO <sub>2</sub> Using TiO <sub>2</sub> -Graphene Nanocomposites.<br>Journal of Nanomaterials, 2016, 2016, 1-5.                                                                                                      | 2.7 | 17        |
| 148 | Surface and interface modification strategies of CdS-based photocatalysts. Interface Science and Technology, 2020, , 313-348.                                                                                                                   | 3.3 | 17        |
| 149 | Fabrication of sustainedâ€release and antibacterial citronella oilâ€loaded composite microcapsules based<br>on <scp>P</scp> ickering emulsion templates. Journal of Applied Polymer Science, 2018, 135, 46386.                                  | 2.6 | 16        |
| 150 | Magnetic fluids' stability improved by oleic acid bilayer-coated structure via one-pot synthesis.<br>Chemical Papers, 2016, 70, .                                                                                                               | 2.2 | 14        |
| 151 | Adsorption of water vapor onto and its electrothermal desorption from activated carbons with different electric conductivities. Separation and Purification Technology, 2012, 85, 77-82.                                                        | 7.9 | 13        |
| 152 | Ultrahigh nitrogen-doped carbon/superfine-Sn particles for lithium ion battery anode. Journal of<br>Materials Science: Materials in Electronics, 2020, 31, 22224-22238.                                                                         | 2.2 | 11        |
| 153 | Full spectrum ultra-wideband absorber with stacked round hole disks. Optik, 2022, 249, 168297.                                                                                                                                                  | 2.9 | 11        |
| 154 | Hydrodeoxygenation of non-edible bio-lipids to renewable hydrocarbons over mesoporous SiO2-TiO2 supported NiMo bimetallic catalyst. Applied Catalysis A: General, 2022, 633, 118475.                                                            | 4.3 | 11        |
| 155 | Physically Close yet Chemically Separate Reduction and Oxidation Sites in Double-Walled Nanotubes<br>for Photocatalytic Hydrogen Generation. Journal of Physical Chemistry Letters, 2019, 10, 3739-3743.                                        | 4.6 | 9         |
| 156 | Route to Mesoporous TiO2/Graphitic Carbon Microspheres for Photocatalytic Reduction of CO2 under Simulated Solar Irradiation. ECS Solid State Letters, 2013, 2, M49-M52.                                                                        | 1.4 | 8         |
| 157 | Sandwich-like mesoporous graphene@magnetite@carbon nanosheets for high-rate lithium ion batteries. Solid State Sciences, 2016, 57, 16-23.                                                                                                       | 3.2 | 6         |
| 158 | Boosting bio-lipids deoxygenation via tunable metal-support interaction in nickel/ceria-based catalysts. Fuel, 2022, 322, 124027.                                                                                                               | 6.4 | 6         |
| 159 | Hydrogenated Oxide as Novel Quasi-metallic Cocatalyst for Efficient Visible-Light Driven<br>Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2021, 125, 12672-12681.                                                            | 3.1 | 5         |
| 160 | Hierarchical porous photocatalysts. Interface Science and Technology, 2020, , 63-102.                                                                                                                                                           | 3.3 | 4         |
| 161 | Water Splitting By Photocatalytic Reduction. Green Chemistry and Sustainable Technology, 2016, ,<br>175-210.                                                                                                                                    | 0.7 | 2         |
| 162 | TiO2 supported on SiO2 photocatalysts prepared using ultrasonic-assisted sol-gel method. Materials<br>Science-Poland, 2011, 29, 189-194.                                                                                                        | 1.0 | 0         |