Takamune Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of <scp>CD148 Q276P</scp> / <scp>R326Q</scp> polymorphisms in <scp>A431D</scp> epidermoid cancer cell proliferation and epidermal growth factor receptor signaling. Cancer Reports, 2022, 5, e1566.	1.4	2
2	Hepatocyteâ€specific eNOS deletion impairs exerciseâ€induced adaptations in hepatic mitochondrial function and autophagy. Obesity, 2022, 30, 1066-1078.	3.0	3
3	Clinical and experimental approaches for imaging of acute kidney injury. Clinical and Experimental Nephrology, 2021, 25, 685-699.	1.6	5
4	Renal tubular dilation and fibrosis after unilateral ureter obstruction revealed by relaxometry and spinâ€lock exchange MRI. NMR in Biomedicine, 2021, 34, e4539.	2.8	4
5	Critical Role for Hepatocyte-Specific eNOS in NAFLD and NASH. Diabetes, 2021, 70, 2476-2491.	0.6	14
6	Agonistic anti-CD148 monoclonal antibody attenuates diabetic nephropathy in mice. American Journal of Physiology - Renal Physiology, 2020, 318, F647-F659.	2.7	3
7	Hepatocyteâ€Specific Deletion of eNOS Impairs Mitochondrial Function and Exacerbates Hepatic Steatosis. FASEB Journal, 2019, 33, 582.2.	0.5	0
8	Assessment of unilateral ureter obstruction with multiâ€parametric MRI. Magnetic Resonance in Medicine, 2018, 79, 2216-2227.	3.0	25
9	Assessment of renal fibrosis in murine diabetic nephropathy using quantitative magnetization transfer MRI. Magnetic Resonance in Medicine, 2018, 80, 2655-2669.	3.0	26
10	Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature. PLoS ONE, 2017, 12, e0177192.	2.5	7
11	Determination of the CD148-Interacting Region in Thrombospondin-1. PLoS ONE, 2016, 11, e0154916.	2.5	15
12	Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magnetic Resonance in Medicine, 2016, 76, 1531-1541.	3.0	33
13	Stromal cell–derived factor-1 is upregulated byÂdipeptidyl peptidase-4 inhibition and hasÂprotective roles in progressive diabeticÂnephropathy. Kidney International, 2016, 90, 783-796.	5.2	82
14	Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice. BMC Nephrology, 2016, 17, 24.	1.8	33
15	Current MRI techniques for the assessment of renal disease. Current Opinion in Nephrology and Hypertension, 2015, 24, 217-223.	2.0	37
16	Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension. Circulation Research, 2015, 117, 547-557.	4.5	189
17	CD148 Tyrosine Phosphatase Promotes Cadherin Cell Adhesion. PLoS ONE, 2014, 9, e112753.	2.5	10
18	Repeatability and sensitivity of high resolution blood volume mapping in mouse kidney disease. Journal of Magnetic Resonance Imaging, 2014, 39, 866-871.	3.4	21

TAKAMUNE TAKAHASHI

#	Article	IF	CITATIONS
19	Role of Endothelial Nitric Oxide Synthase in Diabetic Nephropathy: Lessons from Diabetic eNOS Knockout Mice. Journal of Diabetes Research, 2014, 2014, 1-17.	2.3	85
20	The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney International, 2014, 85, 579-589.	5.2	236
21	Pancreatic Islet Vasculature Adapts to Insulin Resistance Through Dilation and Not Angiogenesis. Diabetes, 2013, 62, 4144-4153.	0.6	98
22	Role of blood pressure and the renin-angiotensin system in development of diabetic nephropathy (DN) in eNOS ^{â^'/â~'} <i>db/db</i> mice. American Journal of Physiology - Renal Physiology, 2012, 302, F433-F438.	2.7	39
23	Thrombospondin-1 acts as a ligand for CD148 tyrosine phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1985-1990.	7.1	48
24	eNOS Deficiency Predisposes Podocytes to Injury in Diabetes. Journal of the American Society of Nephrology: JASN, 2012, 23, 1810-1823.	6.1	124
25	Modulation of renal superoxide dismutase by telmisartan therapy in C57BL/6-Ins2Akita diabetic mice. Hypertension Research, 2012, 35, 213-220.	2.7	41
26	SOD1, but not SOD3, deficiency accelerates diabetic renal injury in C57BL/6-Ins2 diabetic mice. Metabolism: Clinical and Experimental, 2012, 61, 1714-1724.	3.4	31
27	Assessment of renal function in mice with unilateral ureteral obstruction using 99mTc-MAG3 dynamic scintigraphy. BMC Nephrology, 2012, 13, 168.	1.8	38
28	Generation of a conditional allele for the mouse endothelial nitric oxide synthase gene. Genesis, 2012, 50, 685-692.	1.6	9
29	Clinicopathological impacts of activated transcription factor c-Jun in peritubular capillary endothelial cells in chronic antibodymediated rejection after kidney transplantation. Clinical Nephrology, 2012, 77, 32-39.	0.7	5
30	Loss of parietal cell superoxide dismutase leads to gastric oxidative stress and increased injury susceptibility in mice. American Journal of Physiology - Renal Physiology, 2011, 301, G537-G546.	3.4	13
31	Reduction of circulating superoxide dismutase activity in type 2 diabetic patients with microalbuminuria and its modulation by telmisartan therapy. Hypertension Research, 2011, 34, 1302-1308.	2.7	29
32	Microarray analysis of cellular thermotolerance. Lasers in Surgery and Medicine, 2010, 42, 912-925.	2.1	26
33	Activation of the transcription factor c-Jun in acute cellular and antibody-mediated rejection after kidney transplantation. Human Pathology, 2010, 41, 1682-1693.	2.0	8
34	Tumor Suppressor Density-enhanced Phosphatase-1 (DEP-1) Inhibits the RAS Pathway by Direct Dephosphorylation of ERK1/2 Kinases. Journal of Biological Chemistry, 2009, 284, 22048-22058.	3.4	68
35	Reduction of Renal Superoxide Dismutase in Progressive Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 1303-1313.	6.1	150
36	An Unbiased Screen Identifies DEP-1 Tumor Suppressor as a Phosphatase Controlling EGFR Endocytosis. Current Biology, 2009, 19, 1788-1798.	3.9	109

Takamune Takahashi

#	Article	IF	CITATIONS
37	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 2503-2512.	6.1	582
38	Heightened Susceptibility to Influenza Mortality in Immunodeficient Mice Caused by a T-Cell Specific Defect in SOD2 Blood, 2009, 114, 1655-1655.	1.4	1
39	Role of HSP70 in cellular thermotolerance. Lasers in Surgery and Medicine, 2008, 40, 704-715.	2.1	42
40	Diagnostic biomarkers of diabetic nephropathy. Expert Opinion on Medical Diagnostics, 2008, 2, 161-169.	1.6	8
41	Overexpression of EPHA2 receptor destabilizes adherens junctions via a RhoA-dependent mechanism. Journal of Cell Science, 2008, 121, 358-368.	2.0	119
42	The tyrosine phosphatase CD148 interacts with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochemical Journal, 2008, 413, 193-200.	3.7	45
43	Genetics of Diabetic Nephropathy: Lessons From Mice. Seminars in Nephrology, 2007, 27, 237-247.	1.6	4
44	Deficiency of Endothelial Nitric-Oxide Synthase Confers Susceptibility to Diabetic Nephropathy in Nephropathy-Resistant Inbred Mice. American Journal of Pathology, 2007, 170, 1473-1484.	3.8	161
45	Bioluminescence Imaging of Vascular Endothelial Growth Factor Promoter Activity in Murine Mammary Tumorigenesis. Molecular Imaging, 2007, 6, 7290.2007.00029.	1.4	6
46	Examining diabetic nephropathy through the lens of mouse genetics. Current Diabetes Reports, 2007, 7, 459-466.	4.2	6
47	Characterization of diabetic nephropathy in a transgenic model of hypoinsulinemic diabetes. American Journal of Physiology - Renal Physiology, 2006, 291, F1315-F1322.	2.7	9
48	Differential Expression of the Intermediate Filament Protein Nestin during Renal Development and Its Localization in Adult Podocytes. Journal of the American Society of Nephrology: JASN, 2006, 17, 1283-1291.	6.1	100
49	Endothelial Nitric Oxide Synthase Deficiency Produces Accelerated Nephropathy in Diabetic Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 2664-2669.	6.1	310
50	A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis. Blood, 2006, 108, 1234-1242.	1.4	75
51	Reverse endocytosis of transmembrane ephrin-B ligands via a clathrin-mediated pathway. Biochemical and Biophysical Research Communications, 2004, 323, 17-23.	2.1	35
52	Visualization of tumor-induced VEGF expression using in vivo bioluminescence. , 2004, 5329, 178.		0
53	Assessment of Cellular Response to Thermal Laser Injury Through Bioluminescence Imaging of Heat Shock Protein 70¶â€. Photochemistry and Photobiology, 2004, 79, 76.	2.5	41
54	A Mutant Receptor Tyrosine Phosphatase, CD148, Causes Defects in Vascular Development. Molecular and Cellular Biology, 2003, 23, 1817-1831.	2.3	94

#	Article	IF	CITATIONS
55	Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β-catenin, and the phosphatase DEP-1/CD148. Journal of Cell Biology, 2003, 161, 793-804.	5.2	374
56	Bioluminescence imaging as a marker for cellular Hsp70 response to thermal laser injury. , 2003, , .		1
57	Temporally Compartmentalized Expression of Ephrin-B2 during Renal Glomerular Development. Journal of the American Society of Nephrology: JASN, 2001, 12, 2673-2682.	6.1	59
58	Endothelial Localization of Receptor Tyrosine Phosphatase, ECRTP/DEP-1, in Developing and Mature Renal Vasculature. Journal of the American Society of Nephrology: JASN, 1999, 10, 2135-2145.	6.1	35
59	Renal microvascular assembly and repair: Power and promise of molecular definition. Kidney International, 1998, 53, 826-835.	5.2	58
60	Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity, 1995, 3, 771-782.	14.3	476
61	Molecular cloning of rat JAK3, a novel member of the JAK family of protein tyrosine kinases. FEBS Letters, 1994, 342, 124-128.	2.8	88
62	Interstitial Nephritis Associated with Glomerulonephritis in a Patient with Hashimoto's Disease and Idiopathic Portal Hypertension Internal Medicine, 1992, 31, 641-648.	0.7	6
63	Cene expression of metalloproteinase and its inhibitor in mesangial cells exposed to high glucose. Biochemical and Biophysical Research Communications, 1992, 185, 1048-1054.	2.1	46
64	Microlamellar Structures in Lobular Glomerulonephritis Associated with Monoclonal IgG Lambda Paraproteinemia. Pathology International, 1990, 40, 913-921.	1.3	6