
Masato Kotsugi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fe–Ni composition dependence of magnetic anisotropy in artificially fabricated L1 ₀ -ordered FeNi films. Journal of Physics Condensed Matter, 2014, 26, 064207.	1.8	82
2	Formation of FeNi with <i>L</i> 1 ₀ -ordered structure using high-pressure torsion. Philosophical Magazine Letters, 2014, 94, 639-646.	1.2	79
3	Novel Magnetic Domain Structure in Iron Meteorite Induced by the Presence of L1 ₀ -FeNi. Applied Physics Express, 2010, 3, 013001.	2.4	68
4	Three-Dimensional Noncollinear Antiferromagnetic Order in Single-Crystalline FeMn Ultrathin Films. Physical Review Letters, 2004, 92, 017201.	7.8	62
5	Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach. Scientific Reports, 2020, 10, 21790.	3.3	61
6	Origin of strong magnetic anisotropy in L10-FeNi probed by angular-dependent magnetic circular dichroism. Journal of Magnetism and Magnetic Materials, 2013, 326, 235-239.	2.3	44
7	Controls over Structural and Electronic Properties of Epitaxial Graphene on Silicon Using Surface Termination of 3C-SiC(111)/Si. Applied Physics Express, 2011, 4, 115104.	2.4	39
8	Three-dimensional spin orientation in antiferromagnetic domain walls of NiO studied by x-ray magnetic linear dichroism photoemission electron microscopy. Physical Review B, 2012, 85, .	3.2	39
9	Magnetic Anisotropy and Chemical Order of Artificially Synthesized L1 ₀ -Ordered FeNi Films on Au–Cu–Ni Buffer Layers. Japanese Journal of Applied Physics, 2012, 51, 010204.	1.5	37
10	Automated estimation of materials parameter from X-ray absorption and electron energy-loss spectra with similarity measures. Npj Computational Materials, 2019, 5, .	8.7	37
11	Orbital-specific Tunability of Many-Body Effects in Bilayer Graphene by Gate Bias and Metal Contact. Scientific Reports, 2014, 4, 3713.	3.3	28
12	Addition of Co to L1 ₀ -ordered FeNi films: influences on magnetic properties and ordered structures. Journal Physics D: Applied Physics, 2014, 47, 425001.	2.8	27
13	Fabrication of <i>L</i> 1-FeNi by pulsed-laser deposition. Applied Physics Letters, 2019, 114, .	3.3	16
14	Fabrication of L10-FeNi phase by sputtering with rapid thermal annealing. Journal of Alloys and Compounds, 2018, 750, 164-170.	5.5	15
15	Deduction of atomic orbitals in a valence band by two-dimensional angular distribution of photoelectrons. Surface Science, 1999, 438, 214-222.	1.9	14
16	Site-Selective Epitaxy of Graphene on Si Wafers. Proceedings of the IEEE, 2013, 101, 1557-1566.	21.3	13
17	Microscopically-Tuned Band Structure of Epitaxial Graphene through Interface and Stacking Variations Using Si Substrate Microfabrication. Scientific Reports, 2015, 4, 5173.	3.3	13
18	Magnetic Anisotropy and Chemical Order of Artificially Synthesized L1 ₀ -Ordered FeNi Films on Au–Cu–Ni Buffer Layers. Japanese Journal of Applied Physics, 2012, 51, 010204.	1.5	13

Masato Kotsugi

#	Article	IF	CITATIONS
19	Metastable Domain Structures of Ferromagnetic Microstructures Observed by Soft X-Ray Magnetic Circular Dichroism Microscopy. Japanese Journal of Applied Physics, 2000, 39, L585-L587.	1.5	12
20	X-ray nanospectroscopic characterization of a molecularly thin ferromagnetic Tilâ^'xCoxO2 nanosheet. Applied Physics Letters, 2008, 93, 093112.	3.3	12
21	Observation of Micro-Magnetic Structures by Synchrotron Radiation Photoelectron Emission Microscopy. Journal of the Physical Society of Japan, 2013, 82, 021005.	1.6	12
22	Dynamics of Magnetostatically Coupled Vortices Observed by Time-Resolved Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2011, 50, 053001.	1.5	12
23	Determination of local magnetic moment in L1 ₀ -FeNi using photoelectron emission microscopy (PEEM). Journal of Physics: Conference Series, 2011, 266, 012095.	0.4	11
24	Magnetic patterning of FeRh thin films by energetic light ion microbeam irradiation. Japanese Journal of Applied Physics, 2014, 53, 05FC06.	1.5	11
25	Complete Assignment of Spin Domains in Antiferromagnetic NiO(100) by Photoemission Electron Microscopy and Cluster Model Calculation. Journal of the Physical Society of Japan, 2010, 79, 013703.	1.6	10
26	Extraction of Physical Parameters from X-ray Spectromicroscopy Data Using Machine Learning. Microscopy and Microanalysis, 2018, 24, 478-479.	0.4	10
27	High-Quality Few-Layer Graphene on Single-Crystalline SiC thin Film Grown on Affordable Wafer for Device Applications. Nanomaterials, 2021, 11, 392.	4.1	10
28	Symmetry analysis of the Fermi surface of Bi2Sr2CaCu2O8 by display analyzer. Journal of Electron Spectroscopy and Related Phenomena, 1998, 88-91, 489-493.	1.7	9
29	Application of atomic stereomicroscope to surface science. Progress in Surface Science, 2003, 71, 217-239.	8.3	9
30	Dynamics of Magnetostatically Coupled Vortices Observed by Time-Resolved Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2011, 50, 053001.	1.5	9
31	Microscopic and Spectroscopic Studies of Light-Induced Magnetization Switching of GdFeCo Facilitated by Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2012, 51, 073001.	1.5	9
32	Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation. IUCrJ, 2014, 1, 221-227.	2.2	9
33	Operation Mechanism of GaN-based Transistors Elucidated by Element-Specific X-ray Nanospectroscopy. Scientific Reports, 2018, 8, 13268.	3.3	9
34	Fermi surface of Sr2RuO4 studied by two-dimensional angle resolved photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1998, 88-91, 473-477.	1.7	8
35	Capability of insulator study by photoemission electron microscopy at SPring-8. Journal of Synchrotron Radiation, 2013, 20, 620-625.	2.4	8
36	Femtosecond resonant magneto-optical Kerr effect measurement on an ultrathin magnetic film in a soft X-ray free electron laser. Japanese Journal of Applied Physics, 2018, 57, 09TD02.	1.5	8

MASATO KOTSUGI

#	Article	IF	CITATIONS
37	Machine Learning-based Crystal Structure Prediction for X-Ray Microdiffraction. Microscopy and Microanalysis, 2018, 24, 144-145.	0.4	8
38	Microscopic and Spectroscopic Studies of Light-Induced Magnetization Switching of GdFeCo Facilitated by Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2012, 51, 073001.	1.5	8
39	Application of photoelectron emission microscopy (PEEM) to extraterrestrial materials. Surface Science, 2007, 601, 4764-4767.	1.9	7
40	X-ray magnetic circular dichroism photoemission electron microscopy of focused ion beam-induced magnetic patterns on iron–rhodium surfaces. Nuclear Instruments & Methods in Physics Research B, 2013, 302, 51-54.	1.4	7
41	Operating principle of a three-terminal domain wall device with perpendicularly magnetized Ta/CoFeB/MgO free layer and underlying hard magnets. Japanese Journal of Applied Physics, 2014, 53, 063002.	1.5	7
42	Real-space observation of magnetic vortex core gyration in a magnetic disc both with and without a pair tag. Japanese Journal of Applied Physics, 2016, 55, 023002.	1.5	7
43	Progress in Time-Resolved Photoemission Electron Microscopy at BL25SU, SPring-8: Radiofrequency Field Excitation of Magnetic Vortex Core Gyration. Japanese Journal of Applied Physics, 2012, 51, 128001.	1.5	7
44	Progress in Time-Resolved Photoemission Electron Microscopy at BL25SU, SPring-8: Radiofrequency Field Excitation of Magnetic Vortex Core Gyration. Japanese Journal of Applied Physics, 2012, 51, 128001.	1.5	6
45	Striped domains of coarse-grained magnetite observed by X-ray photoemission electron microscopy as a source of the high remanence of granites in the Vredefort dome. Frontiers in Earth Science, 2015, 3, .	1.8	6
46	Fabrication of L10-type FeCo ordered structure using a periodic Ni buffer layer. AIP Advances, 2019, 9, 045307.	1.3	6
47	Element―and Siteâ€Specific Manyâ€Body Interactions in Few‣ayer MoS ₂ During Xâ€Ray Absorp Processes. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800539.	tion 1.8	6
48	Epitaxy of Graphene on 3C-SiC(111) Thin Films on Microfabricated Si(111) Substrates. Japanese Journal of Applied Physics, 2012, 51, 06FD02.	1.5	6
49	Skill-Agnostic analysis of reflection high-energy electron diffraction patterns for Si(111) surface superstructures using machine learning. Science and Technology of Advanced Materials Methods, 2022, 2, 162-174.	1.3	6
50	Direct observation of twin domains of NiO(100) by x-ray linear dichroism at the O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>K</mml:mi>edge using photoemission electron microscopy. Physical Review B, 2012, 85, .</mml:math 	3.2	4
51	Epitaxy of Graphene on 3C-SiC(111) Thin Films on Microfabricated Si(111) Substrates. Japanese Journal of Applied Physics, 2012, 51, 06FD02.	1.5	4
52	Quantitative Analysis of 90° Closure Domains Occurring by Compressive Stress in Fe3%Si(110) Steels. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	4
53	Optical control of magnetization dynamics in Gd–Fe–Co films with different compositions. Applied Physics Express, 2017, 10, 103002.	2.4	4
54	Investigation of local structures and electronic states of Sb-doped Mg2Si by fluorescence XAFS and HAXPES. Applied Physics Letters, 2020, 117, .	3.3	4

MASATO KOTSUGI

#	Article	IF	CITATIONS
55	Realizing large out-of-plane magnetic anisotropy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mr films grown by nitrogen-surfactant epitaxy on Cu(001). Physical Review Materials, 2020, 4, .</mml:mr </mml:msub></mml:mrow></mml:math 	ı>⊉₄mml	:m#> <mml:m< td=""></mml:m<>
56	Symmetry Analysis of the Fermi Surface States of Sr2RuO4by Display-Type Photoelectron Spectroscopy. Journal of the Physical Society of Japan, 1999, 68, 1398-1403.	1.6	4
57	Real-space and pulse-by-pulse analysis of domain wall creep induced by spin-Hall torque. Japanese Journal of Applied Physics, 2019, 58, 023001.	1.5	3
58	Autonomous synthesis system integrating theoretical, informatics, and experimental approaches for large-magnetic-anisotropy materials. Science and Technology of Advanced Materials Methods, 2022, 2, 280-293.	1.3	3
59	Picoampere Resistive Switching Characteristics Realized with Vertically Contacted Carbon Nanotube Atomic Force Microscope Probe. Japanese Journal of Applied Physics, 2013, 52, 110104.	1.5	2
60	Temperature Dependence of Lancet Domains in Grain-Oriented Fe-3%Si Steels. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	2
61	Photoelectron Nano-spectroscopy of Reactive Ion Etching-Induced Damages to the Trench Sidewalls and Bottoms of 4H-SiC Trench-MOSFETs. E-Journal of Surface Science and Nanotechnology, 2018, 16, 257-261.	0.4	0
62	Novel Magnetic Material for Spintronics: A Wish upon a Star. Trends in the Sciences, 2010, 15, 52-56.	0.0	0