Steven Dooley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4713078/publications.pdf

Version: 2024-02-01

203 papers

12,579 citations

25034 57 h-index 28297 105 g-index

233 all docs

233 docs citations

times ranked

233

16320 citing authors

#	Article	IF	CITATIONS
1	FOXA2 prevents hyperbilirubinaemia in acute liver failure by maintaining apical MRP2 expression. Gut, 2023, 72, 549-559.	12.1	9
2	ALK1 controls hepatic vessel formation, angiodiversity, and angiocrine functions in hereditary hemorrhagic telangiectasia of the liver. Hepatology, 2023, 77, 1211-1227.	7.3	5
3	Transcriptomic Crossâ€Species Analysis of Chronic Liver Disease Reveals Consistent Regulation Between Humans and Mice. Hepatology Communications, 2022, 6, 161-177.	4.3	24
4	Follistatin ontrolled activinâ€HNF4α oagulation factor axis in liver progenitor cells determines outcome of acute liver failure. Hepatology, 2022, 75, 322-337.	7.3	14
5	Transforming growth factor \hat{l}^2 latency: A mechanism of cytokine storage and signalling regulation in liver homeostasis and disease. JHEP Reports, 2022, 4, 100397.	4.9	25
6	Inflammation in alcohol-associated liver disease progression. Zeitschrift Fur Gastroenterologie, 2022, 60, 58-66.	0.5	2
7	Liver specific, systemic and genetic contributors to alcohol-related liver disease progression. Zeitschrift Fur Gastroenterologie, 2022, 60, 36-44.	0.5	2
8	Insulin-controlled C/EBPÎ \pm expression determines the impact of TGF-Î 2 on HNF4Î \pm transcription in hepatocytes. Zeitschrift Fur Gastroenterologie, 2022, 60, .	0.5	0
9	Downregulation of ECM1 in hepatocytes as a damage response to liver injury. Zeitschrift Fur Gastroenterologie, 2022, 60, .	0.5	O
10	Multi-omics profiling identifies molecular signatures of acute-on-chronic liver failure in Abcb4KO mice upon chemical intoxication. Zeitschrift Fur Gastroenterologie, 2022, 60, .	0.5	0
11	A hierarchical regulatory network ensures stable albumin transcription under various pathophysiological conditions. Hepatology, 2022, 76, 1673-1689.	7.3	6
12	Serum Glial Cell Line-Derived Neurotrophic Factor (sGDNF) Is a Novel Biomarker in Predicting Cirrhosis in Patients with Chronic Hepatitis B. Canadian Journal of Gastroenterology and Hepatology, 2022, 2022, 1-9.	1.9	1
13	Acute liver injury induces expression of FGF23 in hepatocytes via orphan nuclear receptor ERR \hat{I}^3 signaling. Genes and Diseases, 2022, , .	3.4	O
14	Orphan nuclear receptor ERR- \hat{l}^3 regulates hepatic FGF23 production in acute kidney injury. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
15	Orphan nuclear receptor ERRÎ 3 regulates hepatic TGF-Î 2 2 expression and fibrogenic response in CCl4-induced acute liver injury. Archives of Toxicology, 2021, 95, 3071-3084.	4.2	8
16	Liver Sinusoidal Endothelial Cells Suppress Bone Morphogenetic Protein 2 Production in Response to TGF \hat{l}^2 Pathway Activation. Hepatology, 2021, 74, 2186-2200.	7.3	13
17	Dysregulated paired related homeoboxÂ1 impacts on hepatocellular carcinoma phenotypes. BMC Cancer, 2021, 21, 1006.	2.6	0
18	MicroRNA-124 Alleviates Retinal Vasoregression via Regulating Microglial Polarization. International Journal of Molecular Sciences, 2021, 22, 11068.	4.1	9

#	Article	IF	Citations
19	Mesenchymal stromal cells mitigate liver damage after extended resection in the pig by modulating thrombospondin-1/TGF- \hat{l}^2 . Npj Regenerative Medicine, 2021, 6, 84.	5.2	7
20	An inverse agonist of estrogen-related receptor \hat{I}^3 regulates 2-arachidonoylglycerol synthesis by modulating diacylglycerol lipase expression in alcohol-intoxicated mice. Archives of Toxicology, 2020, 94, 427-438.	4.2	4
21	Orphan Nuclear Receptor ERRÎ ³ Is a Novel Transcriptional Regulator of IL-6 Mediated Hepatic BMP6 Gene Expression in Mice. International Journal of Molecular Sciences, 2020, 21, 7148.	4.1	8
22	Expression of TLR-2 in hepatocellular carcinoma is associated with tumour proliferation, angiogenesis and Caspase-3 expression. Pathology Research and Practice, 2020, 216, 152980.	2.3	12
23	Hepatocyte caveolin-1 modulates metabolic gene profiles and functions in non-alcoholic fatty liver disease. Cell Death and Disease, 2020, 11, 104.	6.3	19
24	TGF-Î ² 2 silencing to target biliary-derived liver diseases. Gut, 2020, 69, 1677-1690.	12.1	31
25	Severe metabolic alterations in liver cancer lead to ERK pathway activation and drug resistance. EBioMedicine, 2020, 54, 102699.	6.1	36
26	Digital Gastroenterology. Journal of Gastrointestinal and Liver Diseases, 2020, 29, 493-496.	0.9	1
27	Bile Microinfarcts in Cholestasis Are Initiated by Rupture of the Apical Hepatocyte Membrane and Cause Shunting of Bile to Sinusoidal Blood. Hepatology, 2019, 69, 666-683.	7.3	89
28	Human skin-derived ABCB5+ stem cell injection improves liver disease parameters in Mdr2KO mice. Archives of Toxicology, 2019, 93, 2645-2660.	4.2	7
29	THU-039-LPS-induced upregulation of RANTES in a new mouse model of bacterial infection related acute-on-chronic liver injury. Journal of Hepatology, 2019, 70, e177.	3.7	0
30	THU-375-Transcription factor TRIM33 controls liver progenitor cell towards hepatocyte differentiation through synergizing with SMAD2/3 following massive parenchymal loss. Journal of Hepatology, 2019, 70, e318-e319.	3.7	1
31	Estrogen-related receptor \hat{I}^3 controls sterol regulatory element-binding protein-1c expression and alcoholic fatty liver. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158521.	2.4	7
32	TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesisâ€"Updated 2019. Cells, 2019, 8, 1419.	4.1	429
33	Adenovirus‑mediated overexpression of bone morphogenetic protein‑9 promotes methionine choline deficiency‑induced non‑alcoholic steatohepatitis in non‑obese mice. Molecular Medicine Reports, 2019, 20, 2743-2753.	2.4	9
34	ECM1 Prevents Activation of Transforming Growth Factor \hat{l}^2 , Hepatic Stellate Cells, and Fibrogenesis in Mice. Gastroenterology, 2019, 157, 1352-1367.e13.	1.3	65
35	Glial cell line-derived neurotrophic factor (GDNF) mediates hepatic stellate cell activation via ALK5/Smad signalling. Gut, 2019, 68, 2214-2227.	12.1	37
36	Hepatic Osteodystrophy—Molecular Mechanisms Proposed to Favor Its Development. International Journal of Molecular Sciences, 2019, 20, 2555.	4.1	43

#	Article	IF	Citations
37	Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver International, 2019, 39, 43-62.	3.9	54
38	7. Pathophysiologie der alkoholbedingten Fibrose und Zirrhose., 2019,, 109-134.		0
39	Editorial: Systems Biology and Bioinformatics in Gastroenterology and Hepatology. Frontiers in Physiology, 2019, 10, 1438.	2.8	O
40	Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 298-307.	3.8	23
41	Caveolin-1 Impacts on TGF- \hat{l}^2 Regulation of Metabolic Gene Signatures in Hepatocytes. Frontiers in Physiology, 2019, 10, 1606.	2.8	7
42	Second exposure to acetaminophen overdose is associated with liver fibrosis in mice. EXCLI Journal, 2019, 18, 51-62.	0.7	3
43	A novel transforming growth factor betaâ€induced long noncoding RNA promotes an inflammatory microenvironment in human intrahepatic cholangiocarcinoma. Hepatology Communications, 2018, 2, 254-269.	4. 3	37
44	Small Heterodimer Partner Deficiency Increases Inflammatory Liver Injury Through C-X-C motif chemokine ligand 2-Driven Neutrophil Recruitment in Mice. Toxicological Sciences, 2018, 163, 254-264.	3.1	9
45	Ethanol sensitizes hepatocytes for TGF-β-triggered apoptosis. Cell Death and Disease, 2018, 9, 51.	6.3	20
46	Monitoring cytochrome P450 activity in living hepatocytes by chromogenic substrates in response to drug treatment or during cell maturation. Archives of Toxicology, 2018, 92, 1133-1149.	4.2	6
47	Hepatic Smad7 overexpression causes severe iron overload in mice. Blood, 2018, 131, 581-585.	1.4	10
48	SOX9 expression decreases survival of patients with intrahepatic cholangiocarcinoma by conferring chemoresistance. British Journal of Cancer, 2018, 119, 1358-1366.	6.4	31
49	Focused scores enable reliable discrimination of small differences in steatosis. Diagnostic Pathology, 2018, 13, 76.	2.0	7
50	Small heterodimer partner negatively regulates C-X-C motif chemokine ligand 2 in hepatocytes during liver inflammation. Scientific Reports, 2018, 8, 15222.	3.3	8
51	Liver cancer cell lines distinctly mimic the metabolic gene expression pattern of the corresponding human tumours. Journal of Experimental and Clinical Cancer Research, 2018, 37, 211.	8.6	99
52	Galunisertib modifies the liver fibrotic composition in the Abcb4Ko mouse model. Archives of Toxicology, 2018, 92, 2297-2309.	4.2	26
53	Confounding influence of tamoxifen in mouse models of Cre recombinase-induced gene activity or modulation. Archives of Toxicology, 2018, 92, 2549-2561.	4.2	20
54	Inverse agonist of ERR $\hat{1}^3$ reduces cannabinoid receptor type 1-mediated induction of fibrinogen synthesis in mice with a high-fat diet-intoxicated liver. Archives of Toxicology, 2018, 92, 2885-2896.	4.2	5

#	Article	IF	Citations
55	CD133 expression in cancer cells predicts poor prognosis of non-mucin producing intrahepatic cholangiocarcinoma. Journal of Translational Medicine, 2018, 16, 50.	4.4	19
56	Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in <scp>DDC</scp> â€induced cholestatic liver injury. Liver International, 2018, 38, 1664-1675.	3.9	26
57	MicroRNA-942 mediates hepatic stellate cell activation by regulating BAMBI expression in human liver fibrosis. Archives of Toxicology, 2018, 92, 2935-2946.	4.2	42
58	Assessment of the hepatocytic differentiation ability of human skin-derived ABCB5+ stem cells. Experimental Cell Research, 2018, 369, 335-347.	2.6	4
59	BMP9 a possible alternative drug for the recently withdrawn BMP7? New perspectives for (re-)implementation by personalized medicine. Archives of Toxicology, 2017, 91, 1353-1366.	4.2	37
60	Quantitative and integrative analysis of paracrine hepatocyte activation by nonparenchymal cells upon lipopolysaccharide induction. FEBS Journal, 2017, 284, 796-813.	4.7	1
61	Global Transcriptional Response of Human Liver Cells to Ethanol Stress of Different Strength Reveals Hormetic Behavior. Alcoholism: Clinical and Experimental Research, 2017, 41, 883-894.	2.4	4
62	Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework. Medical Image Analysis, 2017, 38, 90-103.	11,6	28
63	FAF1 phosphorylation by AKT accumulates TGF-Î ² type II receptor and drives breast cancer metastasis. Nature Communications, 2017, 8, 15021.	12.8	40
64	Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 303-323.e1.	4.5	103
65	Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death and Disease, 2017, 8, e2688-e2688.	6.3	140
66	BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut, 2017, 66, 939-954.	12.1	107
67	Adverse outcome pathways: opportunities, limitations and open questions. Archives of Toxicology, 2017, 91, 3477-3505.	4.2	282
68	A frequent misinterpretation in current research on liver fibrosis: the vessel in the center of CCl4-induced pseudolobules is a portal vein. Archives of Toxicology, 2017, 91, 3689-3692.	4.2	23
69	GATA4 and LMO3 balance angiocrine signaling and autocrine inflammatory activation by BMP2 in liver sinusoidal endothelial cells. Gene, 2017, 627, 491-499.	2.2	17
70	The level of caveolin-1 expression determines response to TGF- \hat{l}^2 as a tumour suppressor in hepatocellular carcinoma cells. Cell Death and Disease, 2017, 8, e3098-e3098.	6.3	25
71	Transforming Growth Factor- \hat{l}^2 Drives the Transendothelial Migration of Hepatocellular Carcinoma Cells. International Journal of Molecular Sciences, 2017, 18, 2119.	4.1	17
72	Orphan nuclear receptor ERRÎ 3 is a key regulator of human fibrinogen gene expression. PLoS ONE, 2017, 12, e0182141.	2.5	4

#	Article	IF	Citations
73	TGF-Î ² 1 and TGF-Î ² 2 abundance in liver diseases of mice and men. Oncotarget, 2016, 7, 19499-19518.	1.8	52
74	Evolving Insights on Metabolism, Autophagy, and Epigenetics in Liver Myofibroblasts. Frontiers in Physiology, 2016, 7, 191.	2.8	13
75	PI3K/AKT/mTORâ€dependent stabilization of oncogenic farâ€upstream element binding proteins in hepatocellular carcinoma cells. Hepatology, 2016, 63, 813-826.	7.3	52
76	Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7. Clinical Epigenetics, 2016, 8, 46.	4.1	43
77	Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression. American Journal of Pathology, 2016, 186, 1874-1889.	3.8	28
78	Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Molecular Cancer, 2016, 15, 71.	19.2	162
79	Orphan nuclear receptor SHP regulates iron metabolism through inhibition of BMP6-mediated hepcidin expression. Scientific Reports, 2016, 6, 34630.	3.3	12
80	Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue. Archives of Toxicology, 2016, 90, 2513-2529.	4.2	100
81	Transforming Growth Factor \hat{l}^21 (TGF- \hat{l}^21) Activates Hepcidin mRNA Expression in Hepatocytes. Journal of Biological Chemistry, 2016, 291, 13160-13174.	3.4	29
82	Inhibition of TGF \hat{I}^2 type I receptor activity facilitates liver regeneration upon acute CCl4 intoxication in mice. Archives of Toxicology, 2016, 90, 347-357.	4.2	33
83	<scp>TGF</scp> â€Î² signalling and liver disease. FEBS Journal, 2016, 283, 2219-2232.	4.7	457
84	The rationale for targeting $\langle scp \rangle TGF \langle scp \rangle \hat{a} \in \hat{l}^2$ in chronic liver diseases. European Journal of Clinical Investigation, 2016, 46, 349-361.	3.4	60
85	Hepatic stellate cellâ€expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Molecular Medicine, 2015, 7, 332-338.	6.9	58
86	Erratum to "Inhibition of fibronectin deposition improves experimental liver fibrosis―[J Hepatol 2015;62:625–633]. Journal of Hepatology, 2015, 62, 1455-1456.	3.7	0
87	Pathobiochemical signatures of cholestatic liver disease in bile duct ligated mice. BMC Systems Biology, 2015, 9, 83.	3.0	51
88	Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure. Frontiers in Physiology, 2015, 6, 178.	2.8	35
89	Hepatocyte fate upon TGF- \hat{l}^2 challenge is determined by the matrix environment. Differentiation, 2015, 89, 105-116.	1.9	10
90	Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through ERK signaling pathway. International Journal of Oncology, 2015, 46, 1275-1285.	3.3	52

#	Article	IF	Citations
91	Inhibition of fibronectin deposition improves experimental liver fibrosis. Journal of Hepatology, 2015, 62, 625-633.	3.7	102
92	Submassive hepatic necrosis distinguishes HBV-associated acute on chronic liver failure from cirrhotic patients with acute decompensation. Journal of Hepatology, 2015, 63, 50-59.	3.7	76
93	Multicenter analysis of soluble <scp>A</scp> xl reveals diagnostic value for very early stage hepatocellular carcinoma. International Journal of Cancer, 2015, 137, 385-394.	5.1	41
94	Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma. Clinical Science, 2015, 128, 761-774.	4.3	23
95	Modulation of insulin degrading enzyme activity and liver cell proliferation. Cell Cycle, 2015, 14, 2293-2300.	2.6	36
96	Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: One stone hits two birds. Journal of Hepatology, 2015, 62, 1412-1419.	3.7	122
97	Elevated core-fucosylated IgG is a new marker for hepatitis B virus-related hepatocellular carcinoma. Oncolmmunology, 2015, 4, e1011503.	4.6	32
98	Induction of active demethylation and 5hmC formation by 5-azacytidine is TET2 dependent and suggests new treatment strategies against hepatocellular carcinoma. Clinical Epigenetics, 2015, 7, 98.	4.1	55
99	TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis: Updated. Current Pathobiology Reports, 2015, 3, 291-305.	3.4	36
100	WISP1 Is a Novel Adipokine Linked to Inflammation in Obesity. Diabetes, 2015, 64, 856-866.	0.6	107
101	Potential Roles of Bone Morphogenetic Protein (BMP)-9 in Human Liver Diseases. International Journal of Molecular Sciences, 2014, 15, 5199-5220.	4.1	55
102	p21 promotes sustained liver regeneration and hepatocarcinogenesis in chronic cholestatic liver injury. Gut, 2014, 63, 1501-1512.	12.1	45
103	The virtual liver: state of the art and future perspectives. Archives of Toxicology, 2014, 88, 2071-2075.	4.2	41
104	MicroRNAs play a role in spontaneous recovery from acute liver failure. Hepatology, 2014, 60, 1346-1355.	7.3	84
105	Darbepoetin inhibits proliferation of hepatic cancer cells in the presence of TGF- \hat{l}^2 . Archives of Toxicology, 2014, 88, 89-96.	4.2	4
106	Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Archives of Toxicology, 2014, 88, 1161-1183.	4.2	129
107	Vitamin D modulates biliary fibrosis in ABCB4-deficient mice. Hepatology International, 2014, 8, 443-452.	4.2	32
108	Acute and Chronic Effects of IL-22 on Acetaminophen-Induced Liver Injury. Journal of Immunology, 2014, 193, 2512-2518.	0.8	55

#	Article	IF	Citations
109	Quantitative kinetics analysis of BMP2 uptake into cells and its modulation by BMP antagonists. Journal of Cell Science, 2013, 126, 117-127.	2.0	35
110	Distinct dedifferentiation processes affect caveolin-1 expression in hepatocytes. Cell Communication and Signaling, 2013, 11, 6.	6.5	36
111	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	4.2	1,089
112	Cold shock Y-box protein-1 proteolysis autoregulates its transcriptional activities. Cell Communication and Signaling, 2013, 11, 63.	6.5	40
113	Animal models of chronic liver diseases. American Journal of Physiology - Renal Physiology, 2013, 304, G449-G468.	3.4	172
114	Modeling hepatic osteodystrophy in Abcb4 deficient mice. Bone, 2013, 55, 501-511.	2.9	20
115	Caveolin and TGFâ€Î² entanglements. Journal of Cellular Physiology, 2013, 228, 2097-2102.	4.1	18
116	IFN- \hat{l}^3 inhibits liver progenitor cell proliferation in HBV-infected patients and in 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet-fed mice. Journal of Hepatology, 2013, 59, 738-745.	3.7	30
117	Smad6 and Smad7 are co-regulated with hepcidin in mouse models of iron overload. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 76-84.	3.8	36
118	Systems genetics of hepatocellular damage in vivo and in vitro: identification of a critical network on chromosome 11 in mouse. Physiological Genomics, 2013, 45, 931-939.	2.3	4
119	Transforming Growth Factor- \hat{l}^2 (TGF- \hat{l}^2)-mediated Connective Tissue Growth Factor (CTGF) Expression in Hepatic Stellate Cells Requires Stat3 Signaling Activation. Journal of Biological Chemistry, 2013, 288, 30708-30719.	3.4	159
120	Comparative Analysis of TGF- \hat{l}^2 /Smad Signaling Dependent Cytostasis in Human Hepatocellular Carcinoma Cell Lines. PLoS ONE, 2013, 8, e72252.	2.5	59
121	Rolipram Attenuates Bile Duct Ligation–Induced Liver Injury in Rats: A Potential Pathogenic Role of PDE4. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 80-90.	2.5	30
122	Phosphorylated <scp>S</scp> mad2 and <scp>S</scp> mad3 signaling: Shifting between tumor suppression and fibro arcinogenesis in chronic hepatitis <scp>C</scp> . Hepatology Research, 2013, 43, 1327-1342.	3.4	25
123	Bone morphogenetic proteinâ€9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. Cancer Science, 2013, 104, 398-408.	3.9	67
124	Serum dihydroxyacetone kinase peptide m/z 520.3 as predictor of disease severity in patients with compensated chronic hepatitis B. Journal of Translational Medicine, 2013, 11 , 234 .	4.4	2
125	The right choice of antihypertensives protects primary human hepatocytes from ethanol- and recombinant human TGF-& amp; beta; 1-induced cellular damage. Hepatic Medicine: Evidence and Research, 2013, 5, 31.	2.5	2
126	Reciprocal regulation by TLR4 and TGF- \hat{l}^2 in tumor-initiating stem-like cells. Journal of Clinical Investigation, 2013, 123, 2832-2849.	8.2	140

#	Article	IF	CITATIONS
127	Zonation of Nitrogen and Glucose Metabolism Gene Expression upon Acute Liver Damage in Mouse. PLoS ONE, 2013, 8, e78262.	2.5	45
128	TGFÎ ² Signaling in Liver Regeneration. Current Pharmaceutical Design, 2012, 18, 4103-4113.	1.9	58
129	Identification of RARRES1 as a core regulator in liver fibrosis. Journal of Molecular Medicine, 2012, 90, 1439-1447.	3.9	10
130	Transforming growth factor \hat{l}^21 inhibits bone morphogenic protein (BMP)-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN): possible mechanism for the failure of BMP therapy?. BMC Medicine, 2012, 10, 101.	5.5	60
131	A fast and efficient polymerase chain reaction-based method for the preparation of in situ hybridization probes. Histopathology, 2012, 61, 306-313.	2.9	17
132	TGF-Î ² Signaling in Onset and Progression of Hepatocellular Carcinoma. Digestive Diseases, 2012, 30, 514-523.	1.9	68
133	Interleukin-22 Promotes Proliferation of Liver Stem/Progenitor Cells in Mice and Patients With Chronic Hepatitis B Virus Infection. Gastroenterology, 2012, 143, 188-198.e7.	1.3	138
134	Metabolic Consequences of TGFb Stimulation in CulturedPrimary Mouse Hepatocytes Screened from Transcript Data with ModeScore. Metabolites, 2012, 2, 983-1003.	2.9	2
135	Dynamics and feedback loops in the transforming growth factor \hat{l}^2 signaling pathway. Biophysical Chemistry, 2012, 162, 22-34.	2.8	29
136	Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism. Archives of Toxicology, 2012, 86, 87-95.	4.2	80
137	TGF-Î ² in progression of liver disease. Cell and Tissue Research, 2012, 347, 245-256.	2.9	581
138	Decreased Levels of Active SMAD2 Correlate with Poor Prognosis in Gastric Cancer. PLoS ONE, 2012, 7, e35684.	2.5	20
139	L-carnosine inhibits high-glucose-mediated matrix accumulation in human mesangial cells by interfering with TGF-A production and signalling. Nephrology Dialysis Transplantation, 2011, 26, 3852-3858.	0.7	28
140	Distinct role of endocytosis for Smad and non-Smad TGF- \hat{l}^2 signaling regulation in hepatocytes. Journal of Hepatology, 2011, 55, 369-378.	3.7	55
141	Long-term antifibrotic action of interferon- \hat{l}^3 treatment in patients with chronic hepatitis B virus infection. Hepatobiliary and Pancreatic Diseases International, 2011, 10, 151-157.	1.3	15
142	A Polymorphism Within the Connective Tissue Growth Factor (CTGF) Gene has No Effect on Non-Invasive Markers of Beta-Cell Area and Risk of Type 2 Diabetes. Disease Markers, 2011, 31, 241-246.	1.3	6
143	Alcoholic liver disease and exacerbation by malnutrition and infections: what animal models are currently available?. Annals of the New York Academy of Sciences, 2011, 1216, 41-49.	3.8	6
144	Inflammation does not always kill hepatocytes during liver damage. Hepatology, 2011, 54, 366-366.	7.3	2

#	Article	IF	Citations
145	In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression. Hepatology, 2011, 54, 252-261.	7.3	206
146	IL-13 Induces Connective Tissue Growth Factor in Rat Hepatic Stellate Cells via TGF-β–Independent Smad Signaling. Journal of Immunology, 2011, 187, 2814-2823.	0.8	103
147	Fibronectin Protects from Excessive Liver Fibrosis by Modulating the Availability of and Responsiveness of Stellate Cells to Active TGF-Î ² . PLoS ONE, 2011, 6, e28181.	2.5	65
148	Abstract 1466: Smad 7 induces invasion, migration and in vivo metastasis in Non Small Cell Lung Cancer. , $2011, \dots$		0
149	SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression. Blood, 2010, 115, 2657-2665.	1.4	112
150	Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology, 2010, 52, 2127-2136.	7. 3	95
151	Alcohol, Signaling, and ECM Turnover. Alcoholism: Clinical and Experimental Research, 2010, 34, 4-18.	2.4	33
152	NeoHepatocytes From Alcoholics and Controls Express Hepatocyte Markers and Display Reduced Fibrogenic TGFâ $\hat{\epsilon}^2$ /Smad3 Signaling: Advantage for Cell Transplantation?. Alcoholism: Clinical and Experimental Research, 2010, 34, 708-718.	2.4	6
153	TGF-beta signaling in alcohol induced hepatic injury. Frontiers in Bioscience - Landmark, 2010, 15, 740.	3.0	26
154	Preface. Digestive Diseases, 2010, 28, 701-701.	1.9	0
155	TGF-Î ² enhances alcohol dependent hepatocyte damage via down-regulation of alcohol dehydrogenase I. Journal of Hepatology, 2010, 52, 407-416.	3.7	50
156	TGF- \hat{l}^21 As Possible Link between Loss of Bone Mineral Density and Chronic Inflammation. PLoS ONE, 2010, 5, e14073.	2.5	82
157	Smad7 dependent expression signature highlights BMP2 and HK2 signaling in HSC transdifferentiation. World Journal of Gastroenterology, 2010, 16, 5211.	3.3	5
158	YB-1 Acts as a Ligand for Notch-3 Receptors and Modulates Receptor Activation. Journal of Biological Chemistry, 2009, 284, 26928-26940.	3.4	88
159	Hypotheses on the Role of Transforming Growth Factor- \hat{l}^2 in the Onset and Progression of Hepatocellular Carcinoma. Digestive Diseases, 2009, 27, 93-101.	1.9	33
160	Transforming growth factor- \hat{l}^2 induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway. Growth Factors, 2009, 27, 289-299.	1.7	41
161	Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor \hat{l}^2 -induced apoptosis. Hepatology, 2009, 49, 2031-2043.	7.3	217
162	The etiology of liver damage imparts cytokines transforming growth factor \hat{l}^21 or interleukin-13 as driving forces in fibrogenesis. Hepatology, 2009, 50, 230-243.	7. 3	115

#	Article	IF	Citations
163	Yâ€box proteinâ€1 is actively secreted through a nonâ€classical pathway and acts as an extracellular mitogen. EMBO Reports, 2009, 10, 783-789.	4.5	119
164	Current Experimental Perspectives on the Clinical Progression of Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2009, 33, 1647-1655.	2.4	50
165	Transforming growth factorâ€Î² and hepatocyte transdifferentiation in liver fibrogenesis. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S122-7.	2.8	93
166	Disruption of the Smad7 gene enhances CCI ₄ â€dependent liver damage and fibrogenesis in mice. Journal of Cellular and Molecular Medicine, 2008, 12, 2130-2144.	3.6	54
167	Hepatocyte-Specific Smad7 Expression Attenuates TGF-β–Mediated Fibrogenesis and Protects Against Liver Damage. Gastroenterology, 2008, 135, 642-659.e46.	1.3	258
168	Polymeric meshes induce zonal regulation of matrix metalloproteinaseâ€2 gene expression by macrophages and fibroblasts. FASEB Journal, 2007, 21, 1047-1057.	0.5	25
169	Loss of TGF-Î ² dependent growth control during HSC transdifferentiation. Biochemical and Biophysical Research Communications, 2007, 353, 841-847.	2.1	28
170	IFN- \hat{l}^3 abrogates profibrogenic TGF- \hat{l}^2 signaling in liver by targeting expression of inhibitory and receptor Smads. Journal of Hepatology, 2007, 46, 295-303.	3.7	132
171	Profibrogenic transforming growth factor- \hat{l}^2 /activin receptor-like kinase 5 signaling via connective tissue growth factor expression in hepatocytes. Hepatology, 2007, 46, 1257-1270.	7.3	109
172	TGF- \hat{l}^2 /Smad-signaling in liver cells: Target genes and inhibitors of two parallel pathways. Signal Transduction, 2006, 6, 329-337.	0.4	9
173	Nâ€Acetylâ€Lâ€Cysteine abrogates fibrogenic properties of fibroblasts isolated from Dupuytren's disease by blunting TGFâ€Î² signalling. Journal of Cellular and Molecular Medicine, 2006, 10, 157-165.	3.6	40
174	ld1 is a critical mediator in TGF- \hat{l}^2 -induced transdifferentiation of rat hepatic stellate cells. Hepatology, 2006, 43, 1032-1041.	7.3	132
175	220. AAV Mediated Gene Transfer of Smad7 in Different Models of Cystic Kidney Diseases. Molecular Therapy, 2006, 13, S85.	8.2	0
176	Y-box Protein-1 Is the Crucial Mediator of Antifibrotic Interferon-Î ³ Effects. Journal of Biological Chemistry, 2006, 281, 1784-1795.	3.4	88
177	Antiâ€TGFâ€Î² Strategies for the Treatment of Chronic Liver Disease. Alcoholism: Clinical and Experimental Research, 2005, 29, 121S-131S.	2.4	108
178	Abrogation of Transforming Growth Factor-Î ² Signaling by SMAD7 Inhibits Collagen Gel Contraction of Human Dermal Fibroblasts. Journal of Biological Chemistry, 2005, 280, 21570-21576.	3.4	84
179	Tgf- \hat{l}^2 and the Smad Pathway in Liver Fibrogenesis. , 2005, , 139-150.		3
180	Effect of Interferon-Gamma on Hepatic Fibrosis in Chronic Hepatitis B Virus Infection: A Randomized Controlled Study. Clinical Gastroenterology and Hepatology, 2005, 3, 819-828.	4.4	76

#	Article	IF	CITATIONS
181	Transdifferentiation-dependent expression of $\hat{l}\pm$ -SMA in hepatic stellate cells does not involve TGF- \hat{l}^2 pathways leading to coinduction of collagen type I and thrombospondin-2. Matrix Biology, 2005, 24, 198-207.	3.6	37
182	Molecular Mechanisms of Alcohol-Induced Hepatic Fibrosis. Digestive Diseases, 2005, 23, 264-274.	1.9	70
183	Glucocorticoids decrease the bioavailability of TGF- \hat{l}^2 which leads to a reduced TGF- \hat{l}^2 signaling in hepatic stellate cells. Biochemical and Biophysical Research Communications, 2004, 325, 1264-1270.	2.1	53
184	ANTI-TGF-?? STRATEGIES FOR THE TREATMENT OF CHRONIC LIVER DISEASE Alcoholism: Clinical and Experimental Research, 2004, 28, 62A.	2.4	0
185	IFN-?? AMELIORATES HEPATIC FIBROSIS IN CHRONIC HEPATITIS B VIRUS INFECTION Alcoholism: Clinical and Experimental Research, 2004, 28, 33A.	2.4	0
186	Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology, 2003, 125, 178-191.	1.3	348
187	Divergence of $TGF\hat{l}^2$ signaling in activated hepatic stellate cells downstream from Smad2 phosphorylation. Signal Transduction, 2002, 2, 11-28.	0.4	5
188	Tropoelastin expression is up-regulated during activation of hepatic stellate cells and in the livers of CCl4 -cirrhotic rats. Liver, 2002, 22, 220-227.	0.1	17
189	The Effects of Platelet-Derived Growth Factor Antagonism in Experimental Glomerulonephritis Are Independent of the Transforming Growth Factor‹β System. Journal of the American Society of Nephrology: JASN, 2002, 13, 658-667.	6.1	46
190	Roles of TGF-beta in hepatic fibrosis. Frontiers in Bioscience - Landmark, 2002, 7, d793-807.	3.0	569
191	Expression of Smads during in Vitro Transdifferentiation of Hepatic Stellate Cells to Myofibroblasts. Biochemical and Biophysical Research Communications, 2001, 283, 554-562.	2.1	71
192	Transforming growth factor \hat{l}^2 signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. FEBS Letters, 2001, 502, 4-10.	2.8	179
193	Modulation of transforming growth factor \hat{l}^2 response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology, 2000, 31, 1094-1106.	7.3	224
194	Genomic locus and promoter region of rat Smad7, an important antagonist of TGF \hat{l}^2 signaling. Mammalian Genome, 2000, 11, 169-176.	2.2	36
195	Participation of Smad2, Smad3, and Smad4 in Transforming Growth Factor \hat{l}^2 (TGF- \hat{l}^2)-induced Activation of Smad7. Journal of Biological Chemistry, 2000, 275, 29308-29317.	3.4	127
196	Expression of hMSH-2 Mismatch-Repair Gene in Epithelial and Melanocytic Skin Tumors: Regulation by P53 Protein and UV-B Irradiation., 1999,, 219-226.		0
197	The Three Human Trefoil Genes TFF1, TFF2, and TFF3 Are Located within a Region of 55 kb on Chromosome 21q22.3. Genomics, 1997, 40, 200-202.	2.9	47
198	Specificin VitroBinding of p53 to the Promoter Region of the Human Mismatch Repair Gene hMSH2. Biochemical and Biophysical Research Communications, 1996, 221, 722-728.	2.1	78

STEVEN DOOLEY

#	Article	IF	CITATION
199	A Novel Serine/Threonine-Specific Protein Phosphotransferase Activity of Nm23/Nucleoside-Diphosphate Kinase. FEBS Journal, 1995, 234, 200-207.	0.2	99
200	Isolation and characterization of the human genomic locus coding for the putative metastasis control gene nm23-H1. Human Genetics, 1994, 93, 63-6.	3.8	15
201	High levels of NM23-H1 and NM23-H2 messenger RNA in human squamous-cell lung carcinoma are associated with poor differentiation and advanced tumor stages. International Journal of Cancer, 1993, 55, 375-379.	5.1	91
202	Cross-hybridization between the avian myeloblastosis oncogene and eukaryotic 28S ribosomal RNA. Gene, 1992, 110, 263-264.	2.2	6
203	A rapid protocol for the purification of mitochondrial DNA suitable for studying restriction fragment length polymorphisms. Gene, 1989, 83, 169-172.	2.2	32