Jennifer L. Ross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4711999/publications.pdf

Version: 2024-02-01

172457 138484 4,682 60 29 58 citations h-index g-index papers 63 63 63 5909 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Controlling Liquid Crystal Configuration and Phase Using Multiple Molecular Triggers. Molecules, 2022, 27, 878.	3.8	2
2	Sustained order–disorder transitions in a model colloidal system driven by rhythmic crosslinking. Soft Matter, 2022, , .	2.7	0
3	Nonequilibrium fluctuations and nonlinear response of an active bath. Physical Review Research, 2022, 4, .	3.6	12
4	Crowder and surface effects on self-organization of microtubules. Physical Review E, 2021, 103, 062408.	2.1	10
5	Active cytoskeletal composites display emergent tunable contractility and restructuring. Soft Matter, 2021, 17, 10765-10776.	2.7	10
6	Direct Observation of Liquid Crystal Droplet Configurational Transitions using Optical Tweezers. Langmuir, 2020, 36, 7074-7082.	3.5	17
7	Actin and microtubule crosslinkers tune mobility and control co-localization in a composite cytoskeletal network. Soft Matter, 2020, 16, 7191-7201.	2.7	15
8	Direct Single Molecule Imaging of Enhanced Enzyme Diffusion. Physical Review Letters, 2019, 123, 128101.	7.8	47
9	Triggered disassembly and reassembly of actin networks induces rigidity phase transitions. Soft Matter, 2019, 15, 1335-1344.	2.7	13
10	Self-organization of spindle-like microtubule structures. Soft Matter, 2019, 15, 4797-4807.	2.7	23
11	Katanin catalyzes microtubule depolymerization independently of tubulin Câ€ŧerminal tails. Cytoskeleton, 2019, 76, 254-268.	2.0	14
12	Autonomous materials from biomimicry. MRS Bulletin, 2019, 44, 119-123.	3.5	4
13	Non-monotonic dependence of stiffness on actin crosslinking in cytoskeleton composites. Soft Matter, 2019, 15, 9056-9065.	2.7	15
14	Counterion crossbridges enable robust multiscale elasticity in actin networks. Physical Review Research, 2019, 1 , .	3.6	17
15	Interplay of structure, elasticity, and dynamics in actin-based nematic materials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E124-E133.	7.1	73
16	Cover Image, Volume 75, Issue 12. Cytoskeleton, 2018, 75, C4.	2.0	0
17	Creation and testing of a new, local microtubuleâ€disruption tool based on the microtubuleâ€severing enzyme, katanin p60. Cytoskeleton, 2018, 75, 531-544.	2.0	2
18	Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects. Scientific Reports, 2017, 7, 44290.	3.3	28

#	Article	IF	CITATIONS
19	Contractility in an extensile system. Soft Matter, 2017, 13, 4268-4277.	2.7	24
20	Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chemical Society Reviews, 2017, 46, 5570-5587.	38.1	172
21	Modeling the effects of lattice defects on microtubule breaking and healing. Cytoskeleton, 2017, 74, 3-17.	2.0	20
22	Control of molecular shuttles by designing electrical and mechanical properties of microtubules. Science Robotics, 2017, 2, .	17.6	31
23	Dynamics of microtubules: highlights of recent computational and experimental investigations. Journal of Physics Condensed Matter, 2017, 29, 433003.	1.8	18
24	Type 3 Secretion Translocators Spontaneously Assemble a Hexadecameric Transmembrane Complex. Journal of Biological Chemistry, 2016, 291, 6304-6315.	3.4	33
25	The Dark Matter of Biology. Biophysical Journal, 2016, 111, 909-916.	0.5	46
26	Invited review: Microtubule severing enzymes couple atpase activity with tubulin GTPase spring loading. Biopolymers, 2016, 105, 547-556.	2.4	24
27	Microtubules, MAPs, and motor patterns. Methods in Cell Biology, 2015, 128, 23-38.	1.1	4
28	Katanin Severing and Binding Microtubules Are Inhibited by Tubulin Carboxy Tails. Biophysical Journal, 2015, 109, 2546-2561.	0.5	49
29	TPX2 Inhibits Eg5 by Interactions with Both Motor and Microtubule. Journal of Biological Chemistry, 2015, 290, 17367-17379.	3.4	32
30	Microtubule orientation and spacing within bundles is critical for longâ€range kinesinâ€1 motility. Cytoskeleton, 2014, 71, 595-610.	2.0	22
31	Mechanical Properties of Doubly Stabilized Microtubule Filaments. Biophysical Journal, 2013, 104, 1517-1528.	0.5	78
32	Purification and Biophysical Analysis of Microtubule-Severing Enzymes In Vitro. Methods in Cell Biology, 2013, 115, 191-213.	1.1	11
33	Modern methods to interrogate microtubule dynamics. Integrative Biology (United Kingdom), 2013, 5, 1324.	1.3	10
34	Microtubule organization by kinesin motors and microtubule crosslinking protein MAP65. Journal of Physics Condensed Matter, 2013, 25, 374103.	1.8	37
35	A model system to study transport of self-assembled cargos. Communicative and Integrative Biology, 2013, 6, e25387.	1.4	1
36	Microtubule-severing enzymes at the cutting edge. Journal of Cell Science, 2012, 125, 2561-9.	2.0	188

#	Article	IF	CITATIONS
37	Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2. Molecular Biology of the Cell, 2012, 23, 1254-1266.	2.1	48
38	Human Fidgetin is a microtubule severing the enzyme and minus-end depolymerase that regulates mitosis. Cell Cycle, 2012, 11, 2359-2366.	2.6	55
39	Motor transport of self-assembled cargos in crowded environments. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20814-20819.	7.1	82
40	The impacts of molecular motor traffic jams. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5911-5912.	7.1	17
41	Perturbations in Microtubule Mechanics from Tubulin Preparation. Cellular and Molecular Bioengineering, 2012, 5, 227-238.	2.1	39
42	Drosophila Katanin-60 Depolymerizes and Severs at Microtubule Defects. Biophysical Journal, 2011, 100, 2440-2449.	0.5	90
43	Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nature Cell Biology, 2011, 13, 361-369.	10.3	103
44	Loop formation of microtubules during gliding at high density. Journal of Physics Condensed Matter, 2011, 23, 374104.	1.8	55
45	TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle. Journal of Cell Biology, 2011, 195, 87-98.	5.2	84
46	MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nature Cell Biology, 2011, 13, 1040-1050.	10.3	108
47	Motor Coordination via a Tug-of-War Mechanism Drives Bidirectional Vesicle Transport. Current Biology, 2010, 20, 697-702.	3.9	377
48	Mechanics of microtubules. Journal of Biomechanics, 2010, 43, 23-30.	2.1	207
49	Multiple Color Single Molecule TIRF Imaging and Tracking of MAPs and Motors. Methods in Cell Biology, 2010, 95, 521-542.	1.1	25
50	Manipulating Protein Adsorption using a Patchy Protein-Resistant Brush. Langmuir, 2010, 26, 12147-12154.	3.5	48
51	Studying Plus-End Tracking at Single Molecule Resolution Using TIRF Microscopy. Methods in Cell Biology, 2010, 95, 543-554.	1.1	27
52	A Switch in Retrograde Signaling from Survival to Stress in Rapid-Onset Neurodegeneration. Journal of Neuroscience, 2009, 29, 9903-9917.	3.6	168
53	Cargo transport: molecular motors navigate a complex cytoskeleton. Current Opinion in Cell Biology, 2008, 20, 41-47.	5.4	302
54	Kinesin and Dynein-Dynactin at Intersecting Microtubules: Motor Density Affects Dynein Function. Biophysical Journal, 2008, 94, 3115-3125.	0.5	133

#	Article	IF	CITATIONS
55	Differential Regulation of Dynein and Kinesin Motor Proteins by Tau. Science, 2008, 319, 1086-1089.	12.6	860
56	Complementary dimerization of microtubule-associated tau protein: Implications for microtubule bundling and tau-mediated pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7445-7450.	7.1	138
57	Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10045-10050.	7.1	261
58	Processive bidirectional motion of dynein–dynactin complexes in vitro. Nature Cell Biology, 2006, 8, 562-570.	10.3	274
59	Tau induces cooperative Taxol binding to microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12910-12915.	7.1	52
60	Mobility of Taxol in Microtubule Bundles. Biophysical Journal, 2003, 84, 3959-3967.	0.5	24