
Xavier Vekemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4711074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DILS: Demographic inferences with linked selection by using ABC. Molecular Ecology Resources, 2021, 21, 2629-2644.	4.8	32
2	Wholeâ€genome sequencing and genome regions of special interest: Lessons from major histocompatibility complex, sex determination, and plant selfâ€incompatibility. Molecular Ecology, 2021, 30, 6072-6086.	3.9	17
3	When the genetic architecture matters: evolutionary and ecological implications of self versus nonself recognition in plant selfâ€incompatibility. New Phytologist, 2021, 231, 1304-1307.	7.3	5
4	Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Molecular Biology and Evolution, 2021, 38, 1820-1836.	8.9	24
5	Genotyping and De Novo Discovery of Allelic Variants at the Brassicaceae Self-Incompatibility Locus from Short-Read Sequencing Data. Molecular Biology and Evolution, 2020, 37, 1193-1201.	8.9	19
6	Adaptive divergence in shell morphology in an ongoing gastropod radiation from Lake Malawi. BMC Evolutionary Biology, 2020, 20, 5.	3.2	6
7	Base-Pairing Requirements for Small RNA-Mediated Gene Silencing of Recessive Self-Incompatibility Alleles in <i>Arabidopsis halleri</i> . Genetics, 2020, 215, 653-664.	2.9	12
8	Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. Plant Reproduction, 2020, 33, 43-58.	2.2	10
9	Evolution of selfâ€incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evolutionary Applications, 2020, 13, 1279-1297.	3.1	29
10	Diversification dynamics of freshwater bivalves (Unionidae: Parreysiinae: Coelaturini) indicate historic hydrographic connections throughout the East African Rift System. Molecular Phylogenetics and Evolution, 2020, 148, 106816.	2.7	11
11	Asymmetrical diversification of the receptor-ligand interaction controlling self-incompatibility in Arabidopsis. ELife, 2019, 8, .	6.0	11
12	Immune failure reveals vulnerability of populations exposed to pollution in the bioindicator species Hediste diversicolor. Science of the Total Environment, 2018, 613-614, 1527-1542.	8.0	9
13	Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 2018, 4, 879-887.	9.3	316
14	Elucidation of the genetic architecture of selfâ€incompatibility in olive: Evolutionary consequences and perspectives for orchard management. Evolutionary Applications, 2017, 10, 867-880.	3.1	66
15	The unusual <i>S</i> locus of <i>Leavenworthia</i> is composed of two sets of paralogous loci. New Phytologist, 2017, 216, 1247-1255.	7.3	13
16	Controlling for genetic identity of varieties, pollen contamination and stigma receptivity is essential to characterize the selfâ€incompatibility system of <i>Olea europaea</i> L Evolutionary Applications, 2017, 10, 860-866.	3.1	24
17	Patterns of Polymorphism at the Self-Incompatibility Locus in 1,083 Arabidopsis thaliana Genomes. Molecular Biology and Evolution, 2017, 34, 1878-1889.	8.9	48
18	Dominance hierarchy arising from the evolution of a complex small RNA regulatory network. Science, 2014, 346, 1200-1205.	12.6	61

#	Article	IF	CITATIONS
19	Self-Incompatibility in Brassicaceae: Identification and Characterization of <i>SRK</i> -Like Sequences Linked to the <i>S</i> -Locus in the Tribe Biscutelleae. G3: Genes, Genomes, Genetics, 2014, 4, 983-992.	1.8	32
20	Trait Transitions in Explicit Ecological and Genomic Contexts: Plant Mating Systems as Case Studies. Advances in Experimental Medicine and Biology, 2014, 781, 7-36.	1.6	12
21	The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the <i>Sâ€</i> locus?. Journal of Evolutionary Biology, 2014, 27, 1372-1385.	1.7	76
22	Can we continue to neglect genomic variation in introgression rates when inferring the history of speciation? A case study in a <i><scp>M</scp>ytilus</i> hybrid zone. Journal of Evolutionary Biology, 2014, 27, 1662-1675.	1.7	79
23	Intriguing small-scale spatial distribution of chloropastic and nuclear diversity in the endangered plant Biscutella neustriaca (Brassicaceae). Conservation Genetics, 2013, 14, 65-77.	1.5	3
24	Gradual Molecular Evolution of a Sex Determination Switch through Incomplete Penetrance of Femaleness. Current Biology, 2013, 23, 2559-2564.	3.9	22
25	Secondary Evolution of a Self-Incompatibility Locus in the Brassicaceae Genus Leavenworthia. PLoS Biology, 2013, 11, e1001560.	5.6	54
26	Recent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata. Molecular Biology and Evolution, 2013, 30, 435-447.	8.9	55
27	Contrasted Patterns of Molecular Evolution in Dominant and Recessive Self-Incompatibility Haplotypes in Arabidopsis. PLoS Genetics, 2012, 8, e1002495.	3.5	91
28	Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, <i>Arabidopsis halleri</i> (Brassicaceae). New Phytologist, 2012, 193, 916-928.	7.3	112
29	Does Speciation between Arabidopsis halleri and Arabidopsis lyrata Coincide with Major Changes in a Molecular Target of Adaptation?. PLoS ONE, 2011, 6, e26872.	2.5	87
30	Effect of balancing selection on spatial genetic structure within populations: theoretical investigations on the self-incompatibility locus and empirical studies in Arabidopsis halleri. Heredity, 2011, 106, 319-329.	2.6	42
31	An experimental study of the S-Allee effect in the self-incompatible plant Biscutella neustriaca. Conservation Genetics, 2010, 11, 497-508.	1.5	30
32	What's good for you may be good for me: evidence for adaptive introgression of multiple traits in wild sunflower. New Phytologist, 2010, 187, 6-9.	7.3	14
33	Molecular Evolution within and between Self-Incompatibility Specificities. Molecular Biology and Evolution, 2010, 27, 11-20.	8.9	47
34	EVOLUTION OF DOMINANCE IN SPOROPHYTIC SELF-INCOMPATIBILITY SYSTEMS: I. GENETIC LOAD AND COEVOLUTION OF LEVELS OF DOMINANCE IN POLLEN AND PISTIL. Evolution; International Journal of Organic Evolution, 2009, 63, 2427-2437.	2.3	44
35	DOES FREQUENCY-DEPENDENT SELECTION WITH COMPLEX DOMINANCE INTERACTIONS ACCURATELY PREDICT ALLELIC FREQUENCIES AT THE SELF-INCOMPATIBILITY LOCUS IN <i>ARABIDOPSIS HALLERI </i> ?. Evolution; International Journal of Organic Evolution, 2008, 62, 2545-2557.	2.3	66
36	Unequal allelic frequencies at the selfâ€incompatibility locus within local populations of <i>Prunus avium</i> L.: an effect of population structure?. Journal of Evolutionary Biology, 2008, 21, 889-899.	1.7	42

#	Article	IF	CITATIONS
37	High paternal diversity in the selfâ€incompatible herb <i>Arabidopsis halleri</i> despite clonal reproduction and spatially restricted pollen dispersal. Molecular Ecology, 2008, 17, 1577-1588.	3.9	44
38	Genomic consequences of selection on self-incompatibility genes. Current Opinion in Plant Biology, 2008, 11, 116-122.	7.1	29
39	Evidence for Convergent Nucleotide Evolution and High Allelic Turnover Rates at the complementary sex determiner Gene of Western and Asian Honeybees. Molecular Biology and Evolution, 2008, 25, 696-708.	8.9	50
40	Repeated Adaptive Introgression at a Gene under Multiallelic Balancing Selection. PLoS Genetics, 2008, 4, e1000168.	3.5	151
41	Hitch-hiking to a locus under balancing selection: high sequence diversity and low population subdivision at the S-locus genomic region in <i>Arabidopsis halleri</i> . Genetical Research, 2008, 90, 37-46.	0.9	31
42	A General Model to Explore Complex Dominance Patterns in Plant Sporophytic Self-Incompatibility Systems. Genetics, 2007, 175, 1351-1369.	2.9	70
43	PATTERNS OF ALLOZYME VARIATION IN DIPLOID AND TETRAPLOID CENTAUREA JACEA AT DIFFERENT SPATIAL SCALES. Evolution; International Journal of Organic Evolution, 2007, 55, 943-954.	2.3	4
44	Evolution under strong balancing selection: how many codons determine specificity at the female self-incompatibility gene SRK in Brassicaceae?. BMC Evolutionary Biology, 2007, 7, 132.	3.2	66
45	The Transition to Self-Compatibility in Arabidopsis thaliana and Evolution within S-Haplotypes over 10 Myr. Molecular Biology and Evolution, 2006, 23, 1741-1750.	8.9	154
46	Plant selfâ€incompatibility systems: a molecular evolutionary perspective. New Phytologist, 2005, 168, 61-69.	7.3	136
47	How and when didArabidopsis thaliana become highly self-fertilising. BioEssays, 2005, 27, 472-476.	2.5	46
48	NUCLEAR MICROSATELLITES REVEAL CONTRASTING PATTERNS OF GENETIC STRUCTURE BETWEEN WESTERN AND SOUTHEASTERN EUROPEAN POPULATIONS OF THE COMMON ASH (FRAXINUS EXCELSIOR L). Evolution; International Journal of Organic Evolution, 2004, 58, 976.	2.3	9
49	Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Molecular Ecology, 2004, 13, 2873-2889.	3.9	193
50	Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Molecular Ecology, 2004, 13, 3437-3452.	3.9	248
51	NUCLEAR MICROSATELLITES REVEAL CONTRASTING PATTERNS OF GENETIC STRUCTURE BETWEEN WESTERN AND SOUTHEASTERN EUROPEAN POPULATIONS OF THE COMMON ASH (FRAXINUS EXCELSIOR L.). Evolution; International Journal of Organic Evolution, 2004, 58, 976-988.	2.3	136
52	In situ estimation of outcrossing rate in sorghum landraces using microsatellite markers. Euphytica, 2004, 138, 205-212.	1.2	37
53	New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology, 2004, 13, 921-935.	3.9	1,037
54	Distinction between cultivated and wild chicory gene pools using AFLP markers. Theoretical and Applied Genetics, 2003, 107, 713-718.	3.6	29

#	Article	IF	CITATIONS
55	A comparative study of allozyme variation of peripheral and central populations of Silene nutans L. (Caryophyllaceae) from Western Europe: implications for conservation. Plant Systematics and Evolution, 2003, 242, 49-61.	0.9	33
56	Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Molecular Ecology, 2003, 12, 845-857.	3.9	134
57	Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Molecular Ecology, 2003, 12, 2483-2495.	3.9	147
58	Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlaspi caerulescens. New Phytologist, 2003, 157, 633-641.	7.3	61
59	QUANTIFYING GENE FLOW FROM SPATIAL GENETIC STRUCTURE DATA IN A METAPOPULATION OF CHAMAECRISTA FASCICULATA (LEGUMINOSAE). Evolution; International Journal of Organic Evolution, 2003, 57, 995-1007.	2.3	125
60	spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2002, 2, 618-620.	1.7	3,239
61	Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology, 2002, 11, 139-151.	3.9	747
62	A Morphometric Study of Populations of the Centaurea jacea Complex (Asteraceae) in Belgium. Plant Biology, 2002, 4, 403-412.	3.8	32
63	Allozyme segregation and inter-cytotype reproductive barriers in the polyploid complex Centaurea jacea. Heredity, 2001, 87, 136-145.	2.6	47
64	Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinus excelsior L.). Molecular Ecology, 2001, 10, 1615-1623.	3.9	66
65	PATTERNS OF ALLOZYME VARIATION IN DIPLOID AND TETRAPLOID CENTAUREA JACEA AT DIFFERENT SPATIAL SCALES. Evolution; International Journal of Organic Evolution, 2001, 55, 943.	2.3	60
66	The effect of subdivision on variation at multi-allelic loci under balancing selection. Genetical Research, 2000, 76, 51-62.	0.9	190
67	The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population. Genetical Research, 2000, 76, 63-73.	0.9	63
68	Higher impact of female than male migration on population structure in large mammals. Molecular Ecology, 2000, 9, 1159-1163.	3.9	24
69	Spatial autocorrelation of allozyme and quantitative markers within a natural population of Centaurea jacea (Asteraceae). Journal of Evolutionary Biology, 2000, 13, 656-667.	1.7	26
70	Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theoretical and Applied Genetics, 2000, 100, 918-925.	3.6	119
71	The signature of balancing selection: Fungal mating compatibility gene evolution. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9172-9177.	7.1	138
72	Phylogenetic study on wild allies of Lima bean,Phaseolus lunatus (Fabaceae), and implications on its origin. Plant Systematics and Evolution, 1999, 218, 43-54.	0.9	23

#	Article	IF	CITATIONS
73	Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity, 1999, 83, 145-154.	2.6	360
74	Patterns of allozymic variation within Calluna vulgaris populations at seed bank and adult stages. Heredity, 1999, 82, 432-440.	2.6	43
75	Molecular evidence for an Andean origin and a secondary gene pool for the Lima bean (Phaseolus) Tj ETQq1 1 0.7	'84314 rgl 3.6	3T_/Overlock 41
76	Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theoretical and Applied Genetics, 1999, 99, 157-163.	3.6	65
77	Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity, 1999, 83, 145-154.	2.6	20
78	Patterns of morphological and allozyme variation in sorghum landraces of Northwestern Morocco. Genetic Resources and Crop Evolution, 1998, 45, 541-548.	1.6	25
79	Mate Availability and Fecundity Selection in Multi-Allelic Self- Incompatibility Systems in Plants. Evolution; International Journal of Organic Evolution, 1998, 52, 19.	2.3	59
80	MATE AVAILABILITY AND FECUNDITY SELECTION IN MULTI-ALLELIC SELF-INCOMPATIBILITY SYSTEMS IN PLANTS. Evolution; International Journal of Organic Evolution, 1998, 52, 19-29.	2.3	79
81	Allelic Genealogies in Sporophytic Self-Incompatibility Systems in Plants. Genetics, 1998, 150, 1187-1198.	2.9	60
82	Allozyme variation in relation to ecotypic differentiation and population size in marginal populations of Silene nutans. Heredity, 1997, 78, 552-560.	2.6	64
83	Genetic diversity in Lima bean (Phaseolus lunatus L.) as revealed by RAPD markers. Euphytica, 1997, 95, 157-165.	1.2	47
84	Allozyme diversity and genetic structure in Southâ€Western populations of heather, Calluna vulgaris. New Phytologist, 1997, 137, 325-334.	7.3	32
85	Allozyme variation in relation to ecotypic differentiation and population size in marginal populations of Silene nutans. Heredity, 1997, 78, 552-560.	2.6	21
86	Evolutionary Dynamics of Sporophytic Self-Incompatibility Alleles in Plants. Genetics, 1997, 147, 835-846.	2.9	84
87	Flavonoid profiles variation in Armeria maritima (Mill.) Willd Biochemical Systematics and Ecology, 1995, 23, 319-329.	1.3	12
88	A numerical taxonomic study of Armeria maritima (Plumbaginaceae) in North America and Greenland. Canadian Journal of Botany, 1995, 73, 1583-1595.	1.1	13
89	The population genetics of Armeria maritima (Mill.) Willd. on the River South Tyne, UK. New Phytologist, 1989, 112, 281-293.	7.3	17
90	Factor analysis of the relationships between several physico-chemical and microbiological characteristics of some Belgian agricultural soils. Soil Biology and Biochemistry, 1989, 21, 53-58.	8.8	52