## Michael J Shelley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4710387/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A multiscale biophysical model gives quantized metachronal waves in a lattice of beating cilia.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .         | 7.1  | 27        |
| 2  | Hyperuniformity and phase enrichment in vortex and rotor assemblies. Nature Communications, 2022, 13, 804.                                                                                               | 12.8 | 14        |
| 3  | A fast Chebyshev method for the Bingham closure with application to active nematic suspensions.<br>Journal of Computational Physics, 2022, 457, 110937.                                                  | 3.8  | 6         |
| 4  | Motile dislocations knead odd crystals into whorls. Nature Physics, 2022, 18, 212-218.                                                                                                                   | 16.7 | 35        |
| 5  | How Cross-Link Numbers Shape the Large-Scale Physics of Cytoskeletal Materials. Annual Review of<br>Condensed Matter Physics, 2022, 13, 365-384.                                                         | 14.5 | 2         |
| 6  | Enhanced clamshell swimming with asymmetric beating at low Reynolds number. Soft Matter, 2022, 18, 3605-3612.                                                                                            | 2.7  | 3         |
| 7  | Weakly nonlinear analysis of pattern formation in active suspensions. Journal of Fluid Mechanics, 2022, 942, .                                                                                           | 3.4  | 5         |
| 8  | Thermodynamically consistent coarse-graining of polar active fluids. Physical Review Fluids, 2022, 7, .                                                                                                  | 2.5  | 5         |
| 9  | The many behaviors of deformable active droplets. Mathematical Biosciences and Engineering, 2021, 18, 2849-2881.                                                                                         | 1.9  | 13        |
| 10 | Metallic microswimmers driven up the wall by gravity. Soft Matter, 2021, 17, 6597-6602.                                                                                                                  | 2.7  | 12        |
| 11 | Comparison of explicit and mean-field models of cytoskeletal filaments with crosslinking motors.<br>European Physical Journal E, 2021, 44, 45.                                                           | 1.6  | 5         |
| 12 | A stable and accurate scheme for solving the Stefan problem coupled with natural convection using<br>the Immersed Boundary Smooth Extension method. Journal of Computational Physics, 2021, 432, 110162. | 3.8  | 13        |
| 13 | Lévy Walks and Path Chaos in the Dispersal of Elongated Structures Moving across Cellular Vortical<br>Flows. Physical Review Letters, 2021, 127, 074503.                                                 | 7.8  | 2         |
| 14 | A design framework for actively crosslinked filament networks. New Journal of Physics, 2021, 23, 013012.                                                                                                 | 2.9  | 14        |
| 15 | Swirling Instability of the Microtubule Cytoskeleton. Physical Review Letters, 2021, 126, 028103.                                                                                                        | 7.8  | 24        |
| 16 | Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation. Nature Communications, 2021, 12, 6974.                                                  | 12.8 | 16        |
| 17 | A Compact Eulerian Representation of Axisymmetric Inviscid Vortex Sheet Dynamics. Communications on Pure and Applied Mathematics, 2020, 73, 239-256.                                                     | 3.1  | 1         |
| 18 | Droplet breakup in a stagnation-point flow. Journal of Fluid Mechanics, 2020, 901, .                                                                                                                     | 3.4  | 2         |

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ultra-sharp pinnacles sculpted by natural convective dissolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23339-23344. | 7.1  | 16        |
| 20 | A scalable computational platform for particulate Stokes suspensions. Journal of Computational Physics, 2020, 416, 109524.                                                 | 3.8  | 23        |
| 21 | Stoichiometric interactions explain spindle dynamics and scaling across 100 million years of nematode evolution. ELife, 2020, 9, .                                         | 6.0  | 26        |
| 22 | Current approaches for the analysis of spindle organization. Current Opinion in Structural Biology, 2019, 58, 269-277.                                                     | 5.7  | 8         |
| 23 | Lattices of Hydrodynamically Interacting Flapping Swimmers. Physical Review X, 2019, 9, .                                                                                  | 8.9  | 17        |
| 24 | Relating Rheotaxis and Hydrodynamic Actuation using Asymmetric Gold-Platinum Phoretic Rods.<br>Physical Review Letters, 2019, 123, 178004.                                 | 7.8  | 38        |
| 25 | Self-straining of actively crosslinked microtubule networks. Nature Physics, 2019, 15, 1295-1300.                                                                          | 16.7 | 37        |
| 26 | The stormy fluid dynamics of the living cell. Physics Today, 2019, 72, 32-38.                                                                                              | 0.3  | 20        |
| 27 | The odd free surface flows of a colloidal chiral fluid. Nature Physics, 2019, 15, 1188-1194.                                                                               | 16.7 | 174       |
| 28 | Rotating Membrane Inclusions Crystallize Through Hydrodynamic and Steric Interactions. Physical<br>Review Letters, 2019, 123, 148101.                                      | 7.8  | 32        |
| 29 | Active matter invasion of a viscous fluid: Unstable sheets and a no-flow theorem. Physical Review<br>Letters, 2019, 122, 098002.                                           | 7.8  | 15        |
| 30 | Computing collision stress in assemblies of active spherocylinders: Applications of a fast and generic geometric method. Journal of Chemical Physics, 2019, 150, 064109.   | 3.0  | 14        |
| 31 | Dynamics of Flexible Fibers in Viscous Flows and Fluids. Annual Review of Fluid Mechanics, 2019, 51, 539-572.                                                              | 25.0 | 130       |
| 32 | From cytoskeletal assemblies to living materials. Current Opinion in Cell Biology, 2019, 56, 109-114.                                                                      | 5.4  | 15        |
| 33 | Coarse graining the dynamics of immersed and driven fiber assemblies. Physical Review Fluids, 2019, 4, .                                                                   | 2.5  | 14        |
| 34 | Bistability in the synchronization of actuatedÂmicrofilaments. Journal of Fluid Mechanics, 2018, 836,<br>304-323.                                                          | 3.4  | 39        |
| 35 | Activity-induced instability of phonons in 1D microfluidic crystals. Soft Matter, 2018, 14, 945-950.                                                                       | 2.7  | 7         |
| 36 | Flexibly imposing periodicity in kernel independent FMM: A multipole-to-local operator approach.<br>Journal of Computational Physics, 2018, 355, 214-232.                  | 3.8  | 13        |

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nonlinear concentration patterns and bands in autochemotactic suspensions. Physical Review E, 2018, 98, .                                                                               | 2.1  | 18        |
| 38 | Extensile motor activity drives coherent motions in a model of interphase chromatin. Proceedings of the United States of America, 2018, 115, 11442-11447.                               | 7.1  | 83        |
| 39 | Directed Migration of Microscale Swimmers by an Array of Shaped Obstacles: Modeling and Shape Optimization. SIAM Journal on Applied Mathematics, 2018, 78, 2370-2392.                   | 1.8  | 9         |
| 40 | Universal image systems for non-periodic and periodic Stokes flows above a no-slip wall. Journal of<br>Computational Physics, 2018, 375, 263-270.                                       | 3.8  | 13        |
| 41 | Equilibrium Shapes and Their Stability for Liquid Films in Fast Flows. Physical Review Letters, 2018, 121,<br>094501.                                                                   | 7.8  | 5         |
| 42 | Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation. New Journal of Physics, 2018, 20, 055012. | 2.9  | 20        |
| 43 | Guiding microscale swimmers using teardrop-shaped posts. Soft Matter, 2017, 13, 4681-4688.                                                                                              | 2.7  | 47        |
| 44 | C. elegans chromosomes connect to centrosomes by anchoring into the spindle network. Nature<br>Communications, 2017, 8, 15288.                                                          | 12.8 | 101       |
| 45 | A computational model of the flight dynamics and aerodynamics of a jellyfish-like flyingÂmachine.<br>Journal of Fluid Mechanics, 2017, 819, 621-655.                                    | 3.4  | 22        |
| 46 | Cytoplasmic flows as signatures for the mechanics of mitotic positioning. Molecular Biology of the Cell, 2017, 28, 3261-3270.                                                           | 2.1  | 49        |
| 47 | Forces positioning the mitotic spindle: Theories, and now experiments. BioEssays, 2017, 39, 1600212.                                                                                    | 2.5  | 34        |
| 48 | A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics. Journal of Computational Physics, 2017, 329, 173-209.                                         | 3.8  | 65        |
| 49 | Connecting macroscopic dynamics with microscopic properties in active microtubule network contraction. New Journal of Physics, 2017, 19, 125011.                                        | 2.9  | 14        |
| 50 | Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid. Physical<br>Review Fluids, 2017, 2, .                                                        | 2.5  | 50        |
| 51 | Dynamic self-assembly of microscale rotors and swimmers. Soft Matter, 2016, 12, 4584-4589.                                                                                              | 2.7  | 69        |
| 52 | The Dynamics of Microtubule/Motor-Protein Assemblies in Biology and Physics. Annual Review of Fluid Mechanics, 2016, 48, 487-506.                                                       | 25.0 | 79        |
| 53 | Transport and buckling dynamics of an elastic fibre in a viscous cellular flow. Journal of Fluid Mechanics, 2015, 769, 387-402.                                                         | 3.4  | 44        |
| 54 | Multiscale modeling and simulation of microtubule–motor-protein assemblies. Physical Review E, 2015, 92, 062709.                                                                        | 2.1  | 33        |

| #  | Article                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Theory of Active Suspensions. Biological and Medical Physics Series, 2015, , 319-355.                                                                    | 0.4  | 41        |
| 56 | Multiscale Polar Theory of Microtubule and Motor-Protein Assemblies. Physical Review Letters, 2015, 114, 048101.                                         | 7.8  | 119       |
| 57 | Hydrodynamic schooling of flapping swimmers. Nature Communications, 2015, 6, 8514.                                                                       | 12.8 | 95        |
| 58 | Elastic Fibers in Flows. RSC Soft Matter, 2015, , 168-192.                                                                                               | 0.4  | 14        |
| 59 | Active contraction of microtubule networks. ELife, 2015, 4, .                                                                                            | 6.0  | 112       |
| 60 | Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matter, 2014, 10, 1784.                                                             | 2.7  | 198       |
| 61 | Collective Surfing of Chemically Active Particles. Physical Review Letters, 2014, 112, 128304.                                                           | 7.8  | 46        |
| 62 | Instabilities and nonlinear dynamics of concentrated active suspensions. Physics of Fluids, 2013, 25, .                                                  | 4.0  | 77        |
| 63 | Active suspensions and their nonlinear models. Comptes Rendus Physique, 2013, 14, 497-517.                                                               | 0.9  | 206       |
| 64 | Optimization of Chiral Structures for Microscale Propulsion. Nano Letters, 2013, 13, 531-537.                                                            | 9.1  | 86        |
| 65 | On the rotation of porous ellipsoids in simple shear flows. Journal of Fluid Mechanics, 2013, 733, .                                                     | 3.4  | 20        |
| 66 | On a roll. Nature, 2013, 503, 43-44.                                                                                                                     | 27.8 | 3         |
| 67 | Dispersion of Self-Propelled Rods Undergoing Fluctuation-Driven Flips. Physical Review Letters, 2013, 110, 038301.                                       | 7.8  | 83        |
| 68 | Self-similar evolution of a body eroding in a fluid flow. Physics of Fluids, 2013, 25, .                                                                 | 4.0  | 34        |
| 69 | Emergence of coherent structures and large-scale flows in motile suspensions. Journal of the Royal<br>Society Interface, 2012, 9, 571-585.               | 3.4  | 138       |
| 70 | Experiments and theory of undulatory locomotion in a simple structured medium. Journal of the Royal Society Interface, 2012, 9, 1809-1823.               | 3.4  | 62        |
| 71 | Collective chemotactic dynamics in the presence of self-generated fluid flows. Physical Review E, 2012, 86, 040902.                                      | 2.1  | 47        |
| 72 | Sculpting of an erodible body by flowing water. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19606-19609. | 7.1  | 43        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Fluidâ€Structure Interactions: Research in the Courant Institute's Applied Mathematics Laboratory.<br>Communications on Pure and Applied Mathematics, 2012, 65, 1697-1721.                                                            | 3.1  | 3         |
| 74 | A weak-coupling expansion for viscoelastic fluids applied to dynamic settling of a body. Journal of<br>Non-Newtonian Fluid Mechanics, 2012, 183-184, 25-36.                                                                           | 2.4  | 13        |
| 75 | Oscillations of a layer of viscoelastic fluid under steady forcing. Journal of Non-Newtonian Fluid<br>Mechanics, 2012, 175-176, 38-43.                                                                                                | 2.4  | 5         |
| 76 | Slithering Locomotion. The IMA Volumes in Mathematics and Its Applications, 2012, , 117-135.                                                                                                                                          | 0.5  | 13        |
| 77 | Flapping and Bending Bodies Interacting with Fluid Flows. Annual Review of Fluid Mechanics, 2011, 43, 449-465.                                                                                                                        | 25.0 | 321       |
| 78 | A Stokesian viscoelastic flow: Transition to oscillations and mixing. Physica D: Nonlinear Phenomena, 2011, 240, 1602-1614.                                                                                                           | 2.8  | 26        |
| 79 | Applying a second-kind boundary integral equation for surface tractions in Stokes flow. Journal of Computational Physics, 2011, 230, 2141-2159.                                                                                       | 3.8  | 41        |
| 80 | Modeling and simulation of liquid-crystal elastomers. Physical Review E, 2011, 83, 051703.                                                                                                                                            | 2.1  | 41        |
| 81 | A model of cytoplasmically driven microtubule-based motion in the single-celled <i>Caenorhabditis<br/>elegans</i> embryo. Proceedings of the National Academy of Sciences of the United States of America,<br>2011, 108, 10508-10513. | 7.1  | 57        |
| 82 | Dynamics of complex biofluids. , 2011, , 65-94.                                                                                                                                                                                       |      | 23        |
| 83 | Modeling simple locomotors in Stokes flow. Journal of Computational Physics, 2010, 229, 958-977.                                                                                                                                      | 3.8  | 32        |
| 84 | LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback. Journal of Computational Neuroscience, 2010, 29, 495-507.                                                                                           | 1.0  | 69        |
| 85 | Correlation between spatial frequency and orientation selectivity in V1 cortex: Implications of a network model. Vision Research, 2010, 50, 2261-2273.                                                                                | 1.4  | 20        |
| 86 | Shape optimization of peristaltic pumping. Journal of Computational Physics, 2010, 229, 1260-1291.                                                                                                                                    | 3.8  | 42        |
| 87 | Viscoelastic Fluid Response Can Increase the Speed and Efficiency of a Free Swimmer. Physical Review Letters, 2010, 104, 038101.                                                                                                      | 7.8  | 222       |
| 88 | Focused Force Transmission through an Aqueous Suspension of Granules. Physical Review Letters, 2010, 105, 188301.                                                                                                                     | 7.8  | 38        |
| 89 | Searching for Autocoherence in the Cortical Network with a Time-Frequency Analysis of the Local<br>Field Potential. Journal of Neuroscience, 2010, 30, 4033-4047.                                                                     | 3.6  | 54        |
| 90 | Surprising behaviors in flapping locomotion with passive pitching. Physics of Fluids, 2010, 22, .                                                                                                                                     | 4.0  | 105       |

| #   | Article                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Stability of active suspensions. Physical Review E, 2010, 81, 046311.                                                                                     | 2.1 | 95        |
| 92  | Hydrodynamic mobility of chiral colloidal aggregates. Physical Review E, 2009, 79, 051405.                                                                | 2.1 | 12        |
| 93  | Transition to Mixing and Oscillations in a Stokesian Viscoelastic Flow. Physical Review Letters, 2009, 103, 094501.                                       | 7.8 | 51        |
| 94  | The mechanics of slithering locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10081-10085.          | 7.1 | 302       |
| 95  | Shape-changing bodies in fluid: Hovering, ratcheting, and bursting. Physics of Fluids, 2009, 21, .                                                        | 4.0 | 36        |
| 96  | A neuronal network model of primary visual cortex explains spatial frequency selectivity. Journal of<br>Computational Neuroscience, 2009, 26, 271-287.    | 1.0 | 23        |
| 97  | Theoretical analysis of reverse-time correlation for idealized orientation tuning dynamics. Journal of Computational Neuroscience, 2008, 25, 401-438.     | 1.0 | 1         |
| 98  | Retinal and cortical nonlinearities combine to produce masking in V1 responses to plaids. Journal of Computational Neuroscience, 2008, 25, 390-400.       | 1.0 | 7         |
| 99  | Flapping States of a Flag in an Inviscid Fluid: Bistability and the Transition to Chaos. Physical Review<br>Letters, 2008, 100, 074301.                   | 7.8 | 213       |
| 100 | Instabilities, pattern formation, and mixing in active suspensions. Physics of Fluids, 2008, 20, .                                                        | 4.0 | 270       |
| 101 | Peristaltic pumping and irreversibility of a Stokesian viscoelastic fluid. Physics of Fluids, 2008, 20, .                                                 | 4.0 | 49        |
| 102 | Instabilities and Pattern Formation in Active Particle Suspensions: Kinetic Theory and Continuum Simulations. Physical Review Letters, 2008, 100, 178103. | 7.8 | 366       |
| 103 | Liquid crystal droplet production in a microfluidic device. Liquid Crystals, 2007, 34, 861-870.                                                           | 2.2 | 56        |
| 104 | Rotational dynamics of a superhelix towed in a Stokes fluid. Physics of Fluids, 2007, 19, 103105.                                                         | 4.0 | 41        |
| 105 | Surface waves on a semitoroidal water ring. Physics of Fluids, 2007, 19, 058105.                                                                          | 4.0 | 2         |
| 106 | Emergence of singular structures in Oldroyd-B fluids. Physics of Fluids, 2007, 19, .                                                                      | 4.0 | 72        |
| 107 | Orientational Order and Instabilities in Suspensions of Self-Locomoting Rods. Physical Review Letters, 2007, 99, 058102.                                  | 7.8 | 277       |
| 108 | Stretch-Coil Transition and Transport of Fibers in Cellular Flows. Physical Review Letters, 2007, 99, 058303.                                             | 7.8 | 90        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Moore's law and the Saffman–Taylor instability. Journal of Computational Physics, 2006, 212, 1-5.                                                                                                                                                 | 3.8  | 30        |
| 110 | Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12911-12916.                                                          | 7.1  | 35        |
| 111 | Dynamics of a Deformable Body in a Fast Flowing Soap Film. Physical Review Letters, 2006, 97, 134502.                                                                                                                                             | 7.8  | 23        |
| 112 | Course 5 Some useful numerical techniques for simulating integrate-and-fire networks. Les Houches<br>Summer School Proceedings, 2005, 80, 179-196.                                                                                                | 0.2  | 0         |
| 113 | Computing Microstructural Dynamics for Complex Fluids. , 2005, , 1371-1388.                                                                                                                                                                       |      | 0         |
| 114 | Heavy Flags Undergo Spontaneous Oscillations in Flowing Water. Physical Review Letters, 2005, 94,<br>094302.                                                                                                                                      | 7.8  | 182       |
| 115 | Coherent locomotion as an attracting state for a free flapping body. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11163-11166.                                                                     | 7.1  | 143       |
| 116 | Falling cards. Journal of Fluid Mechanics, 2005, 540, 393.                                                                                                                                                                                        | 3.4  | 67        |
| 117 | Computing Microstructural Dynamics for Complex Fluids. , 2005, , 1371-1388.                                                                                                                                                                       |      | 0         |
| 118 | An egalitarian network model for the emergence of simple and complex cells in visual cortex.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 366-371.                                              | 7.1  | 129       |
| 119 | An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7757-7762. | 7.1  | 111       |
| 120 | How flexibility induces streamlining in a two-dimensional flow. Physics of Fluids, 2004, 16, 1694-1713.                                                                                                                                           | 4.0  | 100       |
| 121 | Fast liquid-crystal elastomer swims into the dark. Nature Materials, 2004, 3, 307-310.                                                                                                                                                            | 27.5 | 894       |
| 122 | A moving overset grid method for interface dynamics applied to non-Newtonian Hele–Shaw flow.<br>Journal of Computational Physics, 2004, 195, 117-142.                                                                                             | 3.8  | 36        |
| 123 | Simulating the dynamics and interactions of flexible fibers in Stokes flows. Journal of Computational Physics, 2004, 196, 8-40.                                                                                                                   | 3.8  | 314       |
| 124 | Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response. Journal of Physiology (Paris), 2003, 97, 237-252.                                                                                   | 2.1  | 24        |
| 125 | Mexican hats and pinwheels in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2848-2853.                                                                                               | 7.1  | 92        |
| 126 | Drag reduction through self-similar bending of a flexible body. Nature, 2002, 420, 479-481.                                                                                                                                                       | 27.8 | 225       |

| #   | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Coarse-grained reduction and analysis of a network model of cortical response: I. Drifting grating stimuli. Journal of Computational Neuroscience, 2002, 12, 97-122.                                                                         | 1.0  | 34        |
| 128 | States of high conductance in a large-scale model of the visual cortex. Journal of Computational Neuroscience, 2002, 13, 93-109.                                                                                                             | 1.0  | 75        |
| 129 | Dynamic Patterns and Self-Knotting of a Driven Hanging Chain. Physical Review Letters, 2001, 87, 114301.                                                                                                                                     | 7.8  | 57        |
| 130 | Pattern formation in non-Newtonian Hele–Shaw flow. Physics of Fluids, 2001, 13, 1191-1212.                                                                                                                                                   | 4.0  | 77        |
| 131 | How Simple Cells Are Made in a Nonlinear Network Model of the Visual Cortex. Journal of Neuroscience, 2001, 21, 5203-5211.                                                                                                                   | 3.6  | 101       |
| 132 | Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials. Journal of Computational Physics, 2001, 169, 302-362.                                                                                                          | 3.8  | 175       |
| 133 | Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 2001, 11, 111-119.                                                                                             | 1.0  | 84        |
| 134 | Instability of Elastic Filaments in Shear Flow Yields First-Normal-Stress Differences. Physical Review<br>Letters, 2001, 87, 198301.                                                                                                         | 7.8  | 107       |
| 135 | The Stokesian hydrodynamics of flexing, stretching filaments. Physica D: Nonlinear Phenomena, 2000, 146, 221-245.                                                                                                                            | 2.8  | 63        |
| 136 | Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature, 2000, 408, 835-839.                                                                                                        | 27.8 | 604       |
| 137 | Computational modeling of orientation tuning dynamics in monkey primary visual cortex. Journal of<br>Computational Neuroscience, 2000, 8, 143-159.                                                                                           | 1.0  | 37        |
| 138 | A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and<br>dynamics in the input layer 4Calpha. Proceedings of the National Academy of Sciences of the United<br>States of America, 2000, 97, 8087-8092. | 7.1  | 228       |
| 139 | Domain of convergence of perturbative solutions for Hele-Shaw flow near interface collapse. Physics of Fluids, 1999, 11, 2809-2811.                                                                                                          | 4.0  | 10        |
| 140 | Spirals, Jets, and Pinches. , 1999, , 119-128.                                                                                                                                                                                               |      | 0         |
| 141 | Instabilities and singularities in Hele–Shaw flow. Physics of Fluids, 1998, 10, 2701-2723.                                                                                                                                                   | 4.0  | 46        |
| 142 | Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability. Physical Review Letters, 1998, 80, 1433-1436.                                                                                                                               | 7.8  | 134       |
| 143 | Hele - Shaw flow and pattern formation in a time-dependent gap. Nonlinearity, 1997, 10, 1471-1495.                                                                                                                                           | 1.4  | 109       |
| 144 | Models of non-Newtonian Hele-Shaw flow. Physical Review E, 1996, 54, R4536-R4539.                                                                                                                                                            | 2.1  | 86        |

| #   | Article                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Self-focussed optical structures in a nematic liquid crystal. Physica D: Nonlinear Phenomena, 1996, 97, 471-497.                                           | 2.8 | 86        |
| 146 | A paraxial model for optical self-focussing in a nematic liquid crystal. Physica D: Nonlinear<br>Phenomena, 1995, 88, 55-81.                               | 2.8 | 48        |
| 147 | Attracting Manifold for a Viscous Topology Transition. Physical Review Letters, 1995, 75, 3665-3668.                                                       | 7.8 | 29        |
| 148 | Removing the stiffness from interfacial flows with surface tension. Journal of Computational Physics, 1994, 114, 312-338.                                  | 3.8 | 448       |
| 149 | Light interacting with liquid crystals. Physica D: Nonlinear Phenomena, 1993, 68, 116-126.                                                                 | 2.8 | 8         |
| 150 | A numerical study of the effect of surface tension and noise on an expanding Hele–Shaw bubble.<br>Physics of Fluids A, Fluid Dynamics, 1993, 5, 2131-2146. | 1.6 | 44        |
| 151 | Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes. Journal of Fluid<br>Mechanics, 1993, 246, 613-652.                       | 3.4 | 82        |
| 152 | Filamentation and Undulation of Self-Focused Laser Beams in Liquid Crystals. Europhysics Letters, 1993, 23, 239-244.                                       | 2.0 | 47        |
| 153 | The collapse of an axi-symmetric, swirling vortex sheet. Nonlinearity, 1993, 6, 843-867.                                                                   | 1.4 | 29        |
| 154 | Topology transitions and singularities in viscous flows. Physical Review Letters, 1993, 70, 3043-3046.                                                     | 7.8 | 93        |
| 155 | Droplet breakup in a model of the Hele-Shaw cell. Physical Review E, 1993, 47, 4169-4181.                                                                  | 2.1 | 148       |
| 156 | A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method.<br>Journal of Fluid Mechanics, 1992, 244, 493.             | 3.4 | 128       |
| 157 | Boundary integral techniques for multi-connected domains. Journal of Computational Physics, 1986, 64, 112-132.                                             | 3.8 | 37        |
| 158 | Toward the cellular-scale simulation of motor-driven cytoskeletal assemblies. ELife, 0, 11, .                                                              | 6.0 | 9         |
| 159 | Active Condensation of Filaments Under Spatial Confinement. Frontiers in Physics, 0, 10, .                                                                 | 2.1 | 0         |