
Florian Altermatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4708790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selection on growth rate and local adaptation drive genomic adaptation during experimental range expansions in the protist <i>Tetrahymena thermophila</i> . Journal of Animal Ecology, 2022, 91, 1088-1103.	2.8	5
2	Patch size distribution affects species invasion dynamics in dendritic networks. Oikos, 2022, 2022, .	2.7	1
3	The importance of indirect effects of climate change adaptations on alpine and preâ€alpine freshwater systems. Ecological Solutions and Evidence, 2022, 3, .	2.0	4
4	Metaâ€analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Molecular Ecology, 2022, 31, 1820-1835.	3.9	76
5	Monitoring invasive alien macroinvertebrate species with environmental <scp>DNA</scp> . River Research and Applications, 2022, 38, 1400-1412.	1.7	7
6	A hotspot of groundwater amphipod diversity on a crossroad of evolutionary radiations. Diversity and Distributions, 2022, 28, 2765-2777.	4.1	18
7	Spatio-temporal patterns of multi-trophic biodiversity and food-web characteristics uncovered across a river catchment using environmental DNA. Communications Biology, 2022, 5, 259.	4.4	23
8	Removal of Waterborne Viruses by <i>Tetrahymena pyriformis</i> Is Virus-Specific and Coincides with Changes in Protist Swimming Speed. Environmental Science & Technology, 2022, 56, 4062-4070.	10.0	16
9	Gap analysis for DNA-based biomonitoring of aquatic ecosystems in China. Ecological Indicators, 2022, 137, 108732.	6.3	13
10	Recent trends in stream macroinvertebrates: warm-adapted and pesticide-tolerant taxa increase in richness. Biology Letters, 2022, 18, 20210513.	2.3	11
11	Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks. Communications Earth & Environment, 2022, 3, .	6.8	8
12	Decisionâ€making and best practices for taxonomyâ€free environmental DNA metabarcoding in biomonitoring using Hill numbers. Molecular Ecology, 2021, 30, 3326-3339.	3.9	32
13	How to design optimal eDNA sampling strategies for biomonitoring in river networks. Environmental DNA, 2021, 3, 157-172.	5.8	40
14	Environmental DNA simultaneously informs hydrological and biodiversity characterization of an Alpine catchment. Hydrology and Earth System Sciences, 2021, 25, 735-753.	4.9	5
15	Mapping biodiversity hotspots of fish communities in subtropical streams through environmental DNA. Scientific Reports, 2021, 11, 10375.	3.3	15
16	Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environmental DNA, 2021, 3, 1113-1127.	5.8	38
17	Integrating fundamental processes to understand ecoâ€evolutionary community dynamics and patterns. Functional Ecology, 2021, 35, 2138-2155.	3.6	11
18	Species Interactions Limit the Predictability of Community Responses to Environmental Change. American Naturalist, 2021, 198, 694-705.	2.1	4

#	Article	lF	CITATIONS
19	Unlocking our understanding of intermittent rivers and ephemeral streams with genomic tools. Frontiers in Ecology and the Environment, 2021, 19, 574-583.	4.0	9
20	Environmental DNA gives comparable results to morphology-based indices of macroinvertebrates in a large-scale ecological assessment. PLoS ONE, 2021, 16, e0257510.	2.5	25
21	Environmental versus extraâ€organismal DNA. Molecular Ecology, 2021, 30, 4606-4607.	3.9	4
22	Dispersal behaviour and riverine network connectivity shape the genetic diversity of freshwater amphipod metapopulations. Molecular Ecology, 2021, 30, 6551-6565.	3.9	9
23	Revisiting global trends in freshwater insect biodiversity. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1506.	6.5	34
24	Environmental threats we can act upon: How to use the science-policy dialogue. Gaia, 2021, 30, 137-137.	0.7	0
25	Competition alters species' plastic and genetic response to environmental change. Scientific Reports, 2021, 11, 23518.	3.3	4
26	Consideration of Multitrophic Biodiversity and Ecosystem Functions Improves Indices on River Ecological Status. Environmental Science & amp; Technology, 2021, 55, 16434-16444.	10.0	18
27	Nonlinear Effects of Intraspecific Competition Alter Landscape-Wide Scaling Up of Ecosystem Function. American Naturalist, 2020, 195, 432-444.	2.1	12
28	Microbial community shifts in streams receiving treated wastewater effluent. Science of the Total Environment, 2020, 709, 135727.	8.0	52
29	Metaecosystem dynamics drive community composition in experimental, multi″ayered spatial networks. Oikos, 2020, 129, 402-412.	2.7	26
30	Gene swamping alters evolution during range expansions in the protist <i>Tetrahymena thermophila</i> . Biology Letters, 2020, 16, 20200244.	2.3	14
31	Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nature Communications, 2020, 11, 3585.	12.8	81
32	Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology, 2020, 29, 4258-4264.	3.9	136
33	Human activities' fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Global Change Biology, 2020, 26, 6867-6879.	9.5	56
34	The ghost of disturbance past: long-term effects of pulse disturbances on community biomass and composition. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200678.	2.6	24
35	Species multidimensional effects explain idiosyncratic responses of communities to environmental change. Nature Ecology and Evolution, 2020, 4, 1036-1043.	7.8	32
36	Global quantitative synthesis of ecosystem functioning across climatic zones and ecosystem types. Global Ecology and Biogeography, 2020, 29, 1139-1176.	5.8	22

#	Article	IF	CITATIONS
37	Generation and application of river network analogues for use in ecology and evolution. Ecology and Evolution, 2020, 10, 7537-7550.	1.9	41
38	Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200652.	2.6	9
39	Evolution under pH stress and high population densities leads to increased densityâ€dependent fitness in the protist <i>Tetrahymena thermophila</i> . Evolution; International Journal of Organic Evolution, 2020, 74, 573-586.	2.3	9
40	Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos, 2020, 129, 607-618.	2.7	73
41	On biological evolution and environmental solutions. Science of the Total Environment, 2020, 724, 138194.	8.0	9
42	How pulse disturbances shape sizeâ€abundance pyramids. Ecology Letters, 2020, 23, 1014-1023.	6.4	13
43	A meeting framework for inclusive and sustainable science. Nature Ecology and Evolution, 2020, 4, 668-671.	7.8	8
44	Assessing different components of diversity across a river network using eDNA. Environmental DNA, 2019, 1, 290-301.	5.8	64
45	Sediment Respiration Pulses in Intermittent Rivers and Ephemeral Streams. Global Biogeochemical Cycles, 2019, 33, 1251-1263.	4.9	48
46	Regulation of the functional structure of aquatic communities across spatial scales in a major river network. Ecology, 2019, 100, e02633.	3.2	26
47	Niches within a niche: ecological differentiation of subterranean amphipods across Europe's interstitial waters. Ecography, 2019, 42, 1212-1223.	4.5	21
48	Metapopulations revisited: the areaâ€dependence of dispersal matters. Ecology, 2019, 100, e02792.	3.2	16
49	Principles of Ecology Revisited: Integrating Information and Ecological Theories for a More Unified Science. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	44
50	Dispersal syndromes can impact ecosystem functioning in spatially structured freshwater populations. Biology Letters, 2019, 15, 20180865.	2.3	28
51	Differential resource consumption in leaf litter mixtures by native and non-native amphipods. Aquatic Ecology, 2019, 53, 151-162.	1.5	5
52	Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Global Change Biology, 2019, 25, 1591-1611.	9.5	71
53	Agriculture versus wastewater pollution as drivers of macroinvertebrate community structure in streams. Science of the Total Environment, 2019, 659, 1256-1265.	8.0	60
54	Monophyly of the Moitessieriidae Bourguignat, 1863 (Caenogastropoda: Truncatelloidea). Folia Malacologica, 2019, 27, 61-70.	0.2	9

#	Article	IF	CITATIONS
55	Species turnover and invasion of dominant freshwater invertebrates alter biodiversity–ecosystemâ€function relationship. Ecological Monographs, 2018, 88, 461-480.	5.4	34
56	Intransitive competition is common across five major taxonomic groups and is driven by productivity, competitive rank and functional traits. Journal of Ecology, 2018, 106, 852-864.	4.0	36
57	Do priority effects outweigh environmental filtering in a guild of dominant freshwater macroinvertebrates?. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180205.	2.6	27
58	Fluvial network topology shapes communities of native and nonâ€native amphipods. Ecosphere, 2018, 9, e02102.	2.2	9
59	Metacommunities in river networks: The importance of network structure and connectivity on patterns and processes. Freshwater Biology, 2018, 63, 1-5.	2.4	72
60	Nonlinear higher order abiotic interactions explain riverine biodiversity. Journal of Biogeography, 2018, 45, 628-639.	3.0	29
61	On Embedding Meta-ecosystems into a Socioecological Framework: A Reply to Renaud et al Trends in Ecology and Evolution, 2018, 33, 484-486.	8.7	5
62	Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities. Freshwater Biology, 2018, 63, 22-32.	2.4	66
63	Meta-Ecosystems 2.0: Rooting the Theory into the Field. Trends in Ecology and Evolution, 2018, 33, 36-46.	8.7	151
64	The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biology, 2018, 63, 141-163.	2.4	273
65	Leaf litter diversity and structure of microbial decomposer communities modulate litter decomposition in aquatic systems. Functional Ecology, 2018, 32, 522-532.	3.6	44
66	Disturbance reverses classic biodiversity predictions in river-like landscapes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182441.	2.6	22
67	Cross-ecosystem carbon flows connecting ecosystems worldwide. Nature Communications, 2018, 9, 4825.	12.8	81
68	Bottom-up and top-down control of dispersal across major organismal groups. Nature Ecology and Evolution, 2018, 2, 1859-1863.	7.8	80
69	Biodiversity increases and decreases ecosystem stability. Nature, 2018, 563, 109-112.	27.8	261
70	Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers. Environmental Science & Technology, 2018, 52, 11708-11719.	10.0	44
71	A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nature Geoscience, 2018, 11, 497-503.	12.9	108
72	The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Science of the Total Environment, 2018, 637-638, 1295-1310.	8.0	377

#	Article	IF	CITATIONS
73	Structural changes within trophic levels are constrained by withinâ€family assembly rules at lower trophic levels. Ecology Letters, 2018, 21, 1221-1228.	6.4	26
74	The Nagoya Protocol could backfire on the Global South. Nature Ecology and Evolution, 2018, 2, 917-919.	7.8	31
75	Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms. PLoS ONE, 2018, 13, e0195529.	2.5	58
76	Why We Need Sustainable Networks Bridging Countries, Disciplines, Cultures and Generations for Aquatic Biomonitoring 2.0: A Perspective Derived From the DNAqua-Net COST Action. Advances in Ecological Research, 2018, 58, 63-99.	2.7	120
77	Landscape configuration alters spatial arrangement of terrestrial-aquatic subsidies in headwater streams. Landscape Ecology, 2018, 33, 1519-1531.	4.2	16
78	Translating Niphargus barcodes from Switzerland into taxonomy with a description of two new species (Amphipoda, Niphargidae). ZooKeys, 2018, 760, 113-141.	1.1	18
79	Demographic stochasticity and resource autocorrelation control biological invasions in heterogeneous landscapes. Oikos, 2017, 126, 1554-1563.	2.7	25
80	Classical metapopulation dynamics and ecoâ€evolutionary feedbacks in dendritic networks. Ecography, 2017, 40, 1455-1466.	4.5	39
81	How lifeâ€history traits affect ecosystem properties: effects of dispersal in metaâ€ecosystems. Oikos, 2017, 126, 532-546.	2.7	54
82	Taxonomic, phylogenetic and ecological diversity of <i>Niphargus</i> (Amphipoda: Crustacea) in the Hölloch cave system (Switzerland). Systematics and Biodiversity, 2017, 15, 218-237.	1.2	16
83	Invasive plants threaten the least mobile butterflies in Switzerland. Diversity and Distributions, 2017, 23, 185-195.	4.1	10
84	Evolution of densityâ€dependent movement during experimental range expansions. Journal of Evolutionary Biology, 2017, 30, 2165-2176.	1.7	28
85	Environmental <scp>DNA</scp> metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 2017, 26, 5872-5895.	3.9	1,210
86	Upstream trophic structure modulates downstream community dynamics via resource subsidies. Ecology and Evolution, 2017, 7, 5724-5731.	1.9	12
87	Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks. Scientific Reports, 2017, 7, 15465.	3.3	16
88	Bridging ecology and conservation: from ecological networks to ecosystem function. Journal of Applied Ecology, 2017, 54, 371-379.	4.0	175
89	Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 2017, 31, 558-567.	3.6	290
90	Information use shapes the dynamics of range expansions into environmental gradients. Global Ecology and Biogeography, 2017, 26, 400-411.	5.8	47

#	Article	IF	CITATIONS
91	Subsidies mediate interactions between communities across space. Oikos, 2017, 126, 972-979.	2.7	25
92	Genomics meets remote sensing in global change studies: monitoring and predicting phenology, evolution and biodiversity. Current Opinion in Environmental Sustainability, 2017, 29, 177-186.	6.3	42
93	Dynamic species classification of microorganisms across time, abiotic and biotic environments—A sliding window approach. PLoS ONE, 2017, 12, e0176682.	2.5	21
94	Integrative research efforts at the boundary of biodiversity and global change research. Current Opinion in Environmental Sustainability, 2017, 29, 215-222.	6.3	6
95	Unravelling the Impacts of Micropollutants in Aquatic Ecosystems. Advances in Ecological Research, 2016, 55, 183-223.	2.7	81
96	Habitat requirements and ecological niche of two cryptic amphipod species at landscape and local scales. Ecosphere, 2016, 7, e01319.	2.2	34
97	Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications, 2016, 7, 12544.	12.8	415
98	Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biology Letters, 2016, 12, 20160111.	2.3	120
99	Landscape-level predictions of diversity in river networks reveal opposing patterns for different groups of macroinvertebrates. Aquatic Ecology, 2016, 50, 283-295.	1.5	36
100	Lessons from the macroinvertebrates: speciesâ€genetic diversity correlations highlight important dissimilar relationships. Freshwater Biology, 2016, 61, 1819-1829.	2.4	14
101	Description of a widely distributed but overlooked amphipod species in the European Alps. Zoological Journal of the Linnean Society, 2016, , .	2.3	8
102	Patterns or mechanisms? Bergmann's and Rapoport's rule in moths along an elevational gradient. Community Ecology, 2016, 17, 137-148.	0.9	20
103	Spatially cascading effect of perturbations in experimental meta-ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161496.	2.6	31
104	Spatial patterns of genetic diversity, community composition and occurrence of native and non-native amphipods in naturally replicated tributary streams. BMC Ecology, 2016, 16, 23.	3.0	15
105	Scale and scope matter when explaining varying patterns of community diversity in riverine metacommunities. Basic and Applied Ecology, 2016, 17, 134-144.	2.7	26
106	Geomorphic controls on elevational gradients of species richness. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1737-1742.	7.1	97
107	Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. Environmental Science & amp; Technology, 2016, 50, 305-312.	10.0	92
108	Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: not only built-up area matters. Urban Ecosystems, 2016, 19, 225-242.	2.4	79

#	Article	IF	CITATIONS
109	A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution, 2015, 5, 1235-1248.	1.9	167
110	Conditionâ€dependent movement and dispersal in experimental metacommunities. Ecology Letters, 2015, 18, 954-963.	6.4	58
111	Impacts of urbanisation on biodiversity: the role of species mobility, degree of specialisation and spatial scale. Oikos, 2015, 124, 1571-1582.	2.7	204
112	Dispersal Dynamics in Food Webs. American Naturalist, 2015, 185, 157-168.	2.1	13
113	Metapopulation Dynamics on Ephemeral Patches. American Naturalist, 2015, 185, 183-195.	2.1	45
114	Inferring species interactions in ecological communities: a comparison of methods at different levels of complexity. Methods in Ecology and Evolution, 2015, 6, 895-906.	5.2	79
115	Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos, 2015, 124, 908-916.	2.7	67
116	Eco-evolutionary feedbacks during experimental range expansions. Nature Communications, 2015, 6, 6844.	12.8	136
117	The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters, 2015, 18, 597-611.	6.4	242
118	Generalized receptor law governs phototaxis in the phytoplankton <i>Euglena gracilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7045-7050.	7.1	60
119	Densityâ€dependent movement and the consequences of the Allee effect in the model organism <i>Tetrahymena</i> . Journal of Animal Ecology, 2015, 84, 712-722.	2.8	40
120	Outâ€ofâ€sample predictions from plant–insect food webs: robustness to missing and erroneous trophic interaction records. Ecological Applications, 2015, 25, 1953-1961.	3.8	8
121	Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation, 2015, 183, 53-63.	4.1	345
122	Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities. Ecology, 2015, 96, 1340-1350.	3.2	40
123	Big answers from small worlds: a user's guide for protist microcosms as a model system in ecology and evolution. Methods in Ecology and Evolution, 2015, 6, 218-231.	5.2	157
124	Morphologically Cryptic Amphipod Species Are "Ecological Clones―at Regional but Not at Local Scale: A Case Study of Four Niphargus Species. PLoS ONE, 2015, 10, e0134384.	2.5	48
125	Transport Distance of Invertebrate Environmental DNA in a Natural River. PLoS ONE, 2014, 9, e88786.	2.5	469
126	Emerging predictable features of replicated biological invasion fronts. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 297-301.	7.1	70

#	Article	IF	CITATIONS
127	Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species. Freshwater Science, 2014, 33, 1174-1183.	1.8	144
128	Active colonization dynamics and diversity patterns are influenced by dendritic network connectivity and species interactions. Ecology and Evolution, 2014, 4, 1243-1254.	1.9	35
129	Complex Interaction of Dendritic Connectivity and Hierarchical Patch Size on Biodiversity in River-Like Landscapes. American Naturalist, 2014, 183, 13-25.	2.1	108
130	Diversity and Distribution of Freshwater Amphipod Species in Switzerland (Crustacea: Amphipoda). PLoS ONE, 2014, 9, e110328.	2.5	49
131	River network properties shape αâ€diversity and community similarity patterns of aquatic insect communities across major drainage basins. Journal of Biogeography, 2013, 40, 2249-2260.	3.0	157
132	Diversity in riverine metacommunities: a network perspective. Aquatic Ecology, 2013, 47, 365-377.	1.5	293
133	Extinction cascades partially estimate herbivore losses in a complete Lepidoptera–plant food web. Ecology, 2013, 94, 1785-1794.	3.2	29
134	Scaling body size fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4646-4650.	7.1	77
135	Predicting novel trophic interactions in a nonâ€native world. Ecology Letters, 2013, 16, 1088-1094.	6.4	123
136	Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5761-5766.	7.1	293
137	Spatial clustering of habitat structure effects patterns of community composition and diversity. Ecology, 2012, 93, 1125-1133.	3.2	27
138	Temperatureâ€related shifts in butterfly phenology depend on the habitat. Global Change Biology, 2012, 18, 2429-2438.	9.5	58
139	Toward a conceptual synthesis for climate change responses. Global Ecology and Biogeography, 2012, 21, 693-703.	5.8	74
140	Interaction of Species Traits and Environmental Disturbance Predicts Invasion Success of Aquatic Microorganisms. PLoS ONE, 2012, 7, e45400.	2.5	30
141	Habitat characteristics and metapopulation dynamics of the copepod Tigriopus californicus. Marine Ecology - Progress Series, 2012, 468, 85-93.	1.9	18
142	Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology, 2011, 92, 859-870.	3.2	90
143	Similarity and Specialization of the Larval versus Adult Diet of European Butterflies and Moths. American Naturalist, 2011, 178, 372-382.	2.1	65
144	Effects of Connectivity and Recurrent Local Disturbances on Community Structure and Population Density in Experimental Metacommunities. PLoS ONE, 2011, 6, e19525.	2.5	78

#	Article	IF	CITATIONS
145	Populations in small, ephemeral habitat patches may drive dynamics in a Daphnia magna metapopulation. Ecology, 2010, 91, 2975-2982.	3.2	63
146	Seasonality in the altitude–diversity pattern of Alpine moths. Basic and Applied Ecology, 2010, 11, 714-722.	2.7	30
147	Tell me what you eat and l'll tell you when you fly: diet can predict phenological changes in response to climate change. Ecology Letters, 2010, 13, 1475-1484.	6.4	95
148	Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1281-1287.	2.6	334
149	Experimental evidence for male biased flightâ€toâ€light behavior in two moth species. Entomologia Experimentalis Et Applicata, 2009, 130, 259-265.	1.4	48
150	Desiccation of Rock Pool Habitats and Its Influence on Population Persistence in a Daphnia Metacommunity. PLoS ONE, 2009, 4, e4703.	2.5	39
151	The influence of pool volume and summer desiccation on the production of the resting and dispersal stage in a Daphnia metapopulation. Oecologia, 2008, 157, 441-452.	2.0	39
152	Genetic diversity of <i>Daphnia magna</i> populations enhances resistance to parasites. Ecology Letters, 2008, 11, 918-928.	6.4	130
153	Climate change affects colonization dynamics in a metacommunity of three <i>Daphnia</i> species. Global Change Biology, 2008, 14, 1209-1220.	9.5	67
154	A short term benefit for outcrossing in a Daphnia metapopulation in relation to parasitism. Journal of the Royal Society Interface, 2007, 4, 777-785.	3.4	23
155	The Genotype Specific Competitive Ability Does Not Correlate with Infection in Natural Daphnia magna Populations. PLoS ONE, 2007, 2, e1280.	2.5	10
156	Parasites promote host gene flow in a metapopulation. Evolutionary Ecology, 2007, 21, 561-575.	1.2	37
157	The challenges and opportunities for implementation of eDNA biomonitoring in riverine systems. ARPHA Conference Abstracts, 0, 4, .	0.0	1
158	Citizen science approach reveals groundwater fauna in Switzerland and a new species of Niphargus (Amphipoda, Niphargidae). Subterranean Biology, 0, 39, 1-31.	5.0	12
159	Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring – the need for calibration experiments. Metabarcoding and Metagenomics, 0, 3, .	0.0	48
160	DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Research Ideas and Outcomes, 0, 2, e11321.	1.0	154
161	A triad of kicknet sampling, eDNA metabarcoding, and predictive modeling to assess richness of mayflies, stoneflies and caddisflies in rivers. Metabarcoding and Metagenomics, 0, 6, .	0.0	5