Miguel A Esteruelas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4707869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition metal liquid crystals: advanced materials within the reach of the coordination chemist. Coordination Chemistry Reviews, 1992, 117, 215-274.	18.8	460
2	Dihydrogen Complexes as Homogeneous Reduction Catalysts. Chemical Reviews, 1998, 98, 577-588.	47.7	230
3	Five- and six-coordinate hydrido(carbonyl)-ruthenium(II) and -osmium(II) complexes containing triisopropylphosphine as ligand. Journal of Organometallic Chemistry, 1986, 303, 221-231.	1.8	200
4	Insertion reactions of the 16-electron complexes MHCl(CO)[P(CHMe2)3]2 (M = Ru, Os) with alkynes. The x-ray crystal structure of [(E)-PhCH:CHOs(Cl)(CO)[P(CHMe2)3]2. Organometallics, 1986, 5, 2295-2299.	2.3	182
5	Preparation, Structure, and Ethylene Polymerization Behavior of Bis(imino)pyridyl Chromium(III) Complexes. Organometallics, 2003, 22, 395-406.	2.3	178
6	Homogeneous Hydrogenation. Catalysis By Metal Complexes, 1994, , .	0.6	176
7	Synthesis, reactivity, molecular structure, and catalytic activity of the novel dichlorodihydridoosmium(IV) complexes OsH2Cl2(PR3)2 (PR3 = P-i-Pr3, PMe-t-Bu2). Inorganic Chemistry, 1991, 30, 288-293.	4.0	175
8	Selective hydrogenation of 1-alkynes to alkenes catalyzed by an iron(II) cis-hydride .eta.2-dihydrogen complex. A case of intramolecular reaction between .eta.2-H2 and .sigmavinyl ligands. Organometallics, 1992, 11, 138-145.	2.3	153
9	Osmium Catalyst for the Borrowing Hydrogen Methodology: α-Alkylation of Arylacetonitriles and Methyl Ketones. ACS Catalysis, 2013, 3, 2072-2075.	11.2	142
10	Osmium–carbon double bonds: Formation and reactions. Coordination Chemistry Reviews, 2007, 251, 795-840.	18.8	138
11	Kinetic and mechanistic investigation of the sequential hydrogenation of phenylacetylene catalyzed by OsHCl(CO)(PR3)2 [PR3 = PMe-tert-Bu2 and P-i-Pr3]. Journal of the American Chemical Society, 1989, 111, 7431-7437.	13.7	136
12	Five-Coordinate Complex [RuHCl(CO)(PPri3)2] as a Precursor for the Preparation of New Cyclopentadienylruthenium Compounds Containing Unsaturated η1-Carbon Ligandsâ€. Organometallics, 1996, 15, 3423-3435.	2.3	136
13	N-Heterocyclic Carbeneâ~'Osmium Complexes for Olefin Metathesis Reactions. Organometallics, 2005, 24, 4343-4346.	2.3	135
14	Direct Access to POP-Type Osmium(II) and Osmium(IV) Complexes: Osmium a Promising Alternative to Ruthenium for the Synthesis of Imines from Alcohols and Amines. Organometallics, 2011, 30, 2468-2471.	2.3	129
15	Addition of Carbon Nucleophiles to the Allenylidene Ligand of [Ru(η5-C5H5)(CCCPh2)(CO)(PiPr3)]BF4:Â Synthesis of New Organic Ligands by Formal Câ^'C Coupling between Mutually Inert Fragments. Organometallics, 1997, 16, 5826-5835.	2.3	123
16	Câ^'C Coupling and Câ^'H Bond Activation Reactions of Cyclopentadienylâ^'Osmium Compounds:  The Rich and Varied Chemistry of Os(η5-C5H5)Cl(PiPr3)2 and Its Major Derivatives. Organometallics, 2005, 24, 3584-3613.	2.3	117
17	Reactions of the Dihydrogen Complex OsCl2(.eta.2-H2)(CO)(PiPr3)2 with Terminal Alkynes: Synthesis of Carbene, Vinylcarbene, and .muBis-carbene Osmium (II) Derivatives. Journal of the American Chemical Society, 1995, 117, 7935-7942.	13.7	114
18	Preparation and Characterization of an Isometallabenzene with the Structure of a 1,2,4-Cyclohexatriene. Journal of the American Chemical Society, 2004, 126, 1946-1947.	13.7	112

#	Article	IF	CITATIONS
19	Synthesis of new hydride-carbyne and hydride-vinylcarbyne complexes of osmium(II) by reaction of OsH2Cl2(P-iso-Pr3)2 with terminal alkynes. Journal of the American Chemical Society, 1993, 115, 4683-4689.	13.7	111
20	Stabilization of NH Tautomers of Quinolines by Osmium and Ruthenium. Journal of the American Chemical Society, 2006, 128, 13044-13045.	13.7	107
21	Homogeneous catalysis by osmium complexes. A review. Journal of Molecular Catalysis A, 1995, 96, 231-243.	4.8	103
22	Polyhydrides of Platinum Group Metals: Nonclassical Interactions and \ddot{I}_f -Bond Activation Reactions. Chemical Reviews, 2016, 116, 8770-8847.	47.7	102
23	Reactions of a Hexahydride-Osmium Complex with Aldehydes: Double Câ^'HαActivationâ^'Decarbonylation and Single Câ^'HαActivationâ~'Hydroxylation Tandem Processes and Catalytic Tishchenko Reactions. Organometallics, 2004, 23, 1340-1348.	2.3	101
24	An Osmium-Carbene Complex with Fischerâ^'Schrock Ambivalent Behavior. Organometallics, 2003, 22, 414-425.	2.3	99
25	Reactivity of OsH4(CO)(PiPr3)2 toward terminal alkynes: synthesis and reactions of the alkynyl-dihydrogen complexes OsH(C2R)(.eta.2-H2)(CO)(PiPr3)2 (R = Ph, SiMe3). Organometallics, 1993, 12, 663-670.	2.3	96
26	Aromatic Diosmatricyclic Nitrogen-Containing Compounds. Journal of the American Chemical Society, 2008, 130, 11612-11613.	13.7	96
27	Synthesis and Characterization of Hydrideâ^'Alkynyl, Allenylidene, Carbyne, and Functionalized-Alkynyl Complexes Containing the [Os(η5-C5H5)(PiPr3)2]+Fragment: The Complex [Os(η5-C5H5)(CCCPh2)(PiPr3)2]PF6, a New Type of Allenylidene Derivative from the Reactivity Point of View, Organometallics, 2000, 19, 2585-2596.	2.3	94
28	Meyer's Complex OsH2Cl2(PiPr3)2as a Precursor for the Preparation of New Cyclopentadienylosmium Compounds. Organometallics, 1997, 16, 4657-4667.	2.3	91
29	Exclusive formation of cis-PhCH:CH(SiEt3) by addition of triethylsilane to phenylacetylene catalyzed by ruthenium complex [(Me2CH)3P]2RuHCl(CO). Organometallics, 1993, 12, 2377-2379.	2.3	89
30	Preparation, X-ray Structure, and Reactivity of an Osmium-Hydroxo Complex Stabilized by an N-Heterocyclic Carbene Ligand: A Base-Free Catalytic Precursor for Hydrogen Transfer from 2-Propanol to Aldehydes. Organometallics, 2008, 27, 3240-3247.	2.3	89
31	A deceptively simple case of selective hydrogenation of phenylacetylene to styrene catalyzed by a cis-hydrido(.eta.2-dihydrogen)ruthenium(II) complex. Organometallics, 1992, 11, 3837-3844.	2.3	88
32	Reactions of a Hexahydrideâ^'Osmium Complex with Aromatic Ketones:Â Câ^'H Activation versus Câ^'F Activation§. Organometallics, 2001, 20, 442-452.	2.3	88
33	Assembly of an Allenylidene Ligand, a Terminal Alkyne, and an Acetonitrile Molecule:Â Formation of Osmacyclopentapyrrole Derivatives. Journal of the American Chemical Society, 2006, 128, 3965-3973.	13.7	87
34	Ruthenium-Catalyzed (2 + 2) Intramolecular Cycloaddition of Allenenes. Journal of the American Chemical Society, 2011, 133, 7660-7663.	13.7	87
35	Berichte, 1987, 120, 11-15.	0.2	86
36	Hydrosilylation of phenylacetylene via an Os(SiEt3)(.eta.2-H2) intermediate catalyzed by OsHCl(CO)(PPr-iso3)2. Organometallics, 1991, 10, 462-466.	2.3	86

#	Article	IF	CITATIONS
37	Influence of the Anion of the Salt Used on the Coordination Mode of an N-Heterocyclic Carbene Ligand to Osmium. Organometallics, 2007, 26, 6556-6563.	2.3	85
38	Osmium atalyzed 7â€ <i>endo</i> Heterocyclization of Aromatic Alkynols into Benzoxepines. Angewandte Chemie - International Edition, 2010, 49, 4278-4281.	13.8	85
39	Dehalogenation and Hydrogenation of Aromatic Compounds Catalyzed by Nanoparticles Generated from Rhodium Bis(imino)pyridine Complexes. Organometallics, 2010, 29, 4375-4383.	2.3	84
40	C(sp2)â^'H Activation of RCHEâ^'py (E = CH, N) and RCHCHC(O)Râ€~ Substrates Promoted by a Highly Unsaturated Osmiumâ^'Monohydride Complex. Organometallics, 2005, 24, 1428-1438.	2.3	83
41	Synthesis and Reactivity of the Unusual Five-Coordinate Hydridoâ^'Hydroxo Complex OsH(OH)(CO)(PiPr3)2. Organometallics, 1997, 16, 3828-3836.	2.3	81
42	Synthesis and Characterization of OsX{NHC(Ph)C6H4}H2(PiPr3)2(X = H, Cl, Br, I):Â Nature of the H2Unit and Its Behavior in Solution. Organometallics, 1998, 17, 4065-4076.	2.3	81
43	POP-Pincer Silyl Complexes of Group 9: Rhodium versus Iridium. Inorganic Chemistry, 2013, 52, 12108-12119.	4.0	80
44	Reduction and C(sp2)â^'H Bond Activation of Ketones Promoted by a Cyclopentadienyl-Osmium- Dihydride-Dihydrogen Complex. Organometallics, 2005, 24, 5989-6000.	2.3	79
45	Coordination of H2 and O2 to[OsHCl(CO)(PiPr3)2]: A Catalytically Active M(η2-H2) Complex. Angewandte Chemie International Edition in English, 1988, 27, 1563-1564.	4.4	78
46	Activation of C(sp2)â^'H and Reduction of CE (E = CH, N) Bonds with an Osmium-Hexahydride Complex: Influence of E on the Behavior of RCHE-py Substrates. Organometallics, 2004, 23, 3627-3639.	2.3	76
47	Hydride-Alkenylcarbyne to Alkenylcarbene Transformation in Bisphosphine-Osmium Complexes. Journal of the American Chemical Society, 2005, 127, 11184-11195.	13.7	76
48	Abnormal and Normal N-Heterocyclic Carbene Osmium Polyhydride Complexes Obtained by Direct Metalation of Imidazolium Salts. Organometallics, 2008, 27, 445-450.	2.3	76
49	CCC–Pincer–NHC Osmium Complexes: New Types of Blue-Green Emissive Neutral Compounds for Organic Light-Emitting Devices (OLEDs). Organometallics, 2014, 33, 5582-5596.	2.3	76
50	Understanding the Formation of Nâ^'H Tautomers from α-Substituted Pyridines: Tautomerization of 2-Ethylpyridine Promoted by Osmium. Journal of the American Chemical Society, 2007, 129, 10998-10999.	13.7	75
51	Reactions of New Osmiumâ^'Dihydride Complexes with Terminal Alkynes:Â Metallacyclopropene versus Metalâ^'Carbyne. Influence of the Alkyne Substituent. Organometallics, 1999, 18, 4949-4959.	2.3	74
52	The chemical and catalytic reactions of hydrido-chloro-carbonylbis (triisopropylphosphine)osmium(II) and its major derivatives. Advances in Organometallic Chemistry, 2001, 47, 1-59.	1.0	74
53	Synthesis, molecular structure, and reactivity of octahedral alkylhydridoosmium(II) complexes [OsH(R)(CO)2(PR'3)2]. Organometallics, 1992, 11, 2034-2043.	2.3	73
54	New Cyclopentadienylosmium Compounds Containing Unsaturated Carbon Donor Coligands: Synthesis, Structure, and Reactivity of Os(η5-C5H5)Cl(CCCPh2)(PiPr3). Organometallics, 1998, 17, 3479-3486.	2.3	73

#	Article	IF	CITATIONS
55	The Five-Coordinate Hydridoâ``Dihydrogen Complex [OsH(η2-H2)(CO)(PiPr3)2]BF4Acting as a Template for the Carbonâ``Carbon Coupling between Methyl Propiolate and 1,1-Diphenyl-2-propyn-1-ol. Organometallics, 1998, 17, 373-381.	2.3	73
56	Reactions of Os(η5-C5H5)Cl(PiPr3)2 with NHCPh2 and PPh3:  The Unit Os(η5-C5H5)(PiPr3) as Support for the Study of the Competitive Alkaneâ~'Arene Intramolecular Câ~'H Activation. Organometallics, 2000, 19, 275-284.	e 2.3	73
57	Triple Câ^'H Activation of a Cycloalkyl Ketone Using an Osmiumâ^'Hexahydride Complex. Organometallics, 2001, 20, 2635-2638.	2.3	73
58	MHCl(CO)(PiPr3)2 (M = Ru, Os) complexes as catalyst precursors for the reduction of unsaturated substrates. Journal of Molecular Catalysis, 1988, 45, 1-5.	1.2	72
59	Reactions of RuHCl(CO)(PiPr3)2 with Alkyn-1-ols: Synthesis of Ruthenium(II) Hydroxyvinyl and Vinylcarbene Complexes. Organometallics, 1994, 13, 4258-4265.	2.3	72
60	Influence of the Group 14 Element on the Deprotonation of OsH(η5-C5H5)(Câ‹®CPh)(EPh3)(PiPr3) (E = Si, Ge):â€ Two Different Organometallic Chemistries. Organometallics, 2001, 20, 4875-4886.	² ‰.	72
61	Alkyne-Coupling Reactions Catalyzed by OsHCl(CO)(PiPr3)2in the Presence of Diethylamine. Organometallics, 2001, 20, 3202-3205.	2.3	71
62	Reactions of Elongated Dihydrogen-Osmium Complexes Containing Orthometalated Ketones with Alkynes:Â Hydride-Vinylidene-I€-Alkyne versus Hydride-Osmacyclopropene. Organometallics, 2003, 22, 2472-2485.	2.3	71
63	Câ^'H Bond Activation and Subsequent Câ^'C Bond Formation Promoted by Osmium:Â 2-Vinylpyridineâ^'Acetylene Couplings. Journal of the American Chemical Society, 2006, 128, 4596-4597.	13.7	71
64	Osmium and Ruthenium Complexes Containing an N-Heterocyclic Carbene Ligand Derived from Benzo[h]quinoline. Organometallics, 2007, 26, 5239-5245.	2.3	71
65	C _β (sp ²)â~H Bond Activation of α,β-Unsaturated Ketones Promoted by a Hydride-Elongated Dihydrogen Complex: Formation of Osmafuran Derivatives with Carbene, Carbyne, and NH-Tautomerized α-Substituted Pyridine Ligands. Organometallics, 2008, 27, 4680-4690.	2.3	70
66	Reactions of OsHCl(CO)(PiPr3)2 with Alkyn-1-ols: Synthesis of (Vinylcarbene)osmium(II) Complexes. Organometallics, 1994, 13, 1662-1668.	2.3	69
67	Carbonâ^'Carbon Coupling and Carbonâ^'Hydrogen Activation Reactions in Bis(triisopropylphosphine)osmium Complexesâ€. Journal of the American Chemical Society, 1996, 118, 89-99.	13.7	68
68	Synthesis, Spectroscopic Characterization, and Reactivity of the Unusual Five-Coordinate Hydridoâ°'Vinylidene Complex OsHCl(CCHPh)(PiPr3)2:Â Precursor for Dioxygen Activation. Organometallics, 1997, 16, 636-645.	2.3	68
69	1,2,3-Diheterocyclization Reactions on the Allenylidene Ligand of a Ruthenium Complex. Organometallics, 1998, 17, 3567-3573.	2.3	68
70	Hydrideâ^'Hydroxyosmacyclopropene versus Hydrideâ^'Hydroxycarbyne and Cyclic Hydroxycarbene: Influence of the Substituents at the C(OH) Carbon Atom of the Carbon Donor Ligand. Organometallics, 2000, 19, 2184-2193.	2.3	68
71	Reaction of OsHCl(CO)(PiPr3)2 with Cyclohexylacetylene: Formation of a Hydrido-Vinylidene Complex via a 1,3-Hydrogen Shift. Organometallics, 1995, 14, 3596-3599.	2.3	65
72	Synthesis and characterisation of [6]-azaosmahelicenes: the first d4-heterometallahelicenes. Chemical Communications, 2012, 48, 5328.	4.1	65

#	Article	IF	CITATIONS
73	The Dihydrideâ^'Osmium(IV) Complex [OsH2(κ2-O2CCH3)(H2O)(PiPr3)2]BF4as a Precursor for Carbonâ^'Carbon Coupling Reactions. Organometallics, 2000, 19, 5098-5106.	2.3	63
74	Δ2- and Δ3-Azaosmetine Complexes as Intermediates in the Stoichiometric Imination of Phenylacetylene with Oximes. Organometallics, 2001, 20, 2294-2302.	2.3	63
75	Quantum Mechanical Exchange Coupling in Trihydridoosmium Complexes Containing Azole Ligands. Inorganic Chemistry, 1996, 35, 7811-7817.	4.0	62
76	Regioselective Addition of PRPh2 to the Cα Atom of the Diphenylallenylidene Ligand of [Ru(η5-C5H5)(CCCPh2)(CO)(PPri3)]BF4. Organometallics, 1998, 17, 5434-5436.	2.3	62
77	Indirect cooperative effects leading to synergism in bimetallic homogeneous catalysts containing azolates as bridging ligands. Organometallics, 1991, 10, 127-133.	2.3	61
78	POP-Pincer Osmium-Polyhydrides: Head-to-Head (<i>Z</i>)-Dimerization of Terminal Alkynes. Inorganic Chemistry, 2013, 52, 6199-6213.	4.0	61
79	Ammonia-Borane Dehydrogenation Promoted by an Osmium Dihydride Complex: Kinetics and Mechanism. ACS Catalysis, 2015, 5, 187-191.	11.2	61
80	Addition of Secondary and Primary Amines to the Allenylidene Ligand of [Ru(η5-C5H5)(CCCPh2)(CO)(PiPr3)]BF4: Synthesis of Azoniabutadienyl, Aminoallenyl, and Azabutadienyl Derivatives of Ruthenium(II). Organometallics, 1999, 18, 4995-5003.	2.3	60
81	Synthesis of Hydridoâ~'Vinylidene and Hydridoâ~'Carbyne Osmium Complexes Containing Pyrazole:Â New Examples of Nâ~'H···Y (Y = N, F, Cl) Hydrogen Bonds. Organometallics, 1999, 18, 2953-2960.	2.3	60
82	Osmium NHC Complexes from Alcohol-Functionalized Imidazoles and Imidazolium Salts. Organometallics, 2011, 30, 1658-1667.	2.3	60
83	Seven-Coordinate Dihydrido Complex OsH2(κ2-O2CCH3){κ1-OC(O)CH3}(PiPr3)2as Precursor of New Organometallic Compounds Containing Unsaturated η1-Carbon Ligands. Organometallics, 1998, 17, 4500-4509.	2.3	59
84	Redox Isomerization of Allylic Alcohols Catalyzed by Osmium and Ruthenium Complexes Containing a Cyclopentadienyl Ligand with a Pendant Amine or Phosphoramidite Group: X-ray Structure of an Î-3-1-Hydroxyallyl-Metal-Hydride Intermediate. Organometallics, 2010, 29, 2166-2175.	2.3	59
85	POP–Rhodium-Promoted C–H and B–H Bond Activation and C–B Bond Formation. Organometallics, 2015, 34, 1911-1924.	2.3	59
86	Insertion reaction of acetone-d6 into the osmium-hydrogen bond of [OsHCl(CO)(P-iso-Pr3)2]: experimental evidence for the hydrogen-transfer mechanism from alcohols to ketones. Inorganic Chemistry, 1991, 30, 1159-1160.	4.0	58
87	Preparation, X-ray Structure, and Reactivity of an Olefin-Carbene-Osmium Complex: α-Alkenylphosphine to α-Allylphosphine Transformation via an Osmaphosphabicyclopentane Intermediate. Organometallics, 2004, 23, 4858-4870.	2.3	58
88	Reactions of a Dihydrogen Complex with Terminal Alkynes: Formation of Osmiumâ^'Carbyne and â''Carbene Derivatives with the Hydridotris(pyrazolyl)borate Ligand. Organometallics, 2008, 27, 3547-3555.	2.3	58
89	POP–Pincer Ruthenium Complexes: d ⁶ Counterparts of Osmium d ⁴ Species. Inorganic Chemistry, 2014, 53, 1195-1209.	4.0	58
90	Bis-alkynyl- and hydrido-alkynyl-osmium(II) and ruthenium(II) complexes containing triisopropylphosphine as ligand. Journal of Organometallic Chemistry, 1989, 366, 187-196.	1.8	57

#	ARTICLE	IF	CITATIONS
91	Hydrogenation of benzylideneacetone catalyzed by OsHCl(CO)(PR3)2 (PR3 = P-iso-Pr3, PMe-tert-Bu2): new roles of dihydrogen complexes in homogeneous catalytic hydrogenation. Organometallics, 1992, 11, 3362-3369.	2.3	57
92	Hydride Exchange Processes in the Coordination Sphere of Transition Metal Complexes:  The OsH3(BH4)(PR3)2 System. Journal of the American Chemical Society, 1996, 118, 8388-8394.	13.7	57
93	A Four-Electron π-Alkyne Complex as Precursor for Allenylidene Derivatives: Preparation, Structure, and Reactivity of [Os(η5-C5H5)(CCCPh2)L(PiPr3)]PF6(L = CO, PHPh2). Organometallics, 2004, 23, 5787-5798.	2.3	57
94	Conclusive Evidence on the Mechanism of the Rhodium-Mediated Decyanative Borylation. Journal of the American Chemical Society, 2015, 137, 12321-12329.	13.7	57
95	Addition of CH3CO2H and HBF4 to Alkynyl Complexes of Ruthenium(II) and Osmium(II). Organometallics, 1994, 13, 1669-1678.	2.3	56
96	New Cyclopentadienylosmium Derivatives Prepared from the Five-Coordinate Complex [OsHCl(CO)(PPri3)2]. Organometallics, 1996, 15, 878-881.	2.3	56
97	Dynamic Behavior in Solution of the <i>Trans</i> â€Hydridodihydrogen Complex [OsHCl(<i>n</i> ² â€H ₂)(CO)(P <i>i</i> Pr ₃) ₂]: Ab Initio and NMR Studies. Chemistry - A European Journal, 1996, 2, 815-825.	3.3	56
98	The Os(CO)(PiPr3)2Unit as a Support for the Transformation of Two Alkyne Molecules into New Organometallic Ligands. Organometallics, 1997, 16, 3169-3177.	2.3	56
99	Reactivity of the Imineâ ^{~,} Vinylidene Complexes OsCl2(CCHPh)(NHCR2)(PiPr3)2 [CR2 = CMe2, C(CH2)4CH2]. Organometallics, 2001, 20, 1545-1554.	2.3	56
100	Reactions of an Osmium-Elongated Dihydrogen Complex with Terminal Alkynes:Â Formation of Novel Bifunctional Compounds with Amphoteric Nature. Organometallics, 2002, 21, 2491-2503.	2.3	56
101	Displacement of Phenyl and Styryl Ligands by Benzophenone Imine and 2-Vinylpyridine on Ruthenium and Osmium. Organometallics, 2006, 25, 3076-3083.	2.3	56
102	Selective Hydration of Nitriles to Amides Promoted by an Os–NHC Catalyst: Formation and X-ray Characterization of κ2-Amidate Intermediates. Organometallics, 2012, 31, 6861-6867.	2.3	56
103	Tris(pyrazol-1-yl)methane-rhodium(I) and -iridium(I) complexes; cyrstal structure of [Rh(COD)(tpzm)][RhCl2(COD)]·3CHCl3. Journal of Organometallic Chemistry, 1988, 344, 93-108.	1.8	55
104	Carbonâ^'Carbon Coupling of Two Alkenyl Fragments on a Saturated Compound. Organometallics, 1997, 16, 2919-2928.	2.3	55
105	Synthesis of Novel Organometallic Compounds Containing η1-Carbon Polycyclic Ligands:  Condensation of Propargyl Alcohol with the Allenylidene Ligand of [Ru(η5-C5H5)(CCCPh2)(CO)(PPri3)]BF4. Organometallics, 2000, 19, 4-14.	2.3	55
106	Hydride-Carbyne to Carbene Transformation in an Osmium-Acetate-Bis(triisopropylphosphine) System:Â Influence of the Coordination Mode of the Carboxylate and the Reaction Solvent. Organometallics, 2007, 26, 2037-2041.	2.3	55
107	Xantphos-Type Complexes of Group 9: Rhodium versus Iridium. Inorganic Chemistry, 2013, 52, 5339-5349.	4.0	55
108	Synthesis and reactions of dihydrido(triethylsilyl)(1,5-cyclooctadiene)iridium(III) complexes: catalysts for dehydrogenative silylation of alkenes. Organometallics, 1986, 5, 1519-1520.	2.3	54

#	Article	IF	CITATIONS
109	Syntheses, Spectroscopic Characterizations, and X-ray Structures of New Os(.eta.2-H2) Compounds Containing Azole Ligands. Inorganic Chemistry, 1994, 33, 787-792.	4.0	54
110	Formation of Imineâ^'Vinylideneâ^'Osmium(II) Derivatives by Hydrogen Transfer from Alkenyl Ligands to Azavinylidene Groups in Alkenylâ^'Azavinylideneâ^'Osmium(IV) Complexes. Organometallics, 2000, 19, 5454-5463.	2.3	54
111	Two- and Four-Electron Alkyne Ligands in Osmiumâ^'Cyclopentadienyl Chemistry:Â Consequences of the π⊥→M Interaction. Organometallics, 2002, 21, 305-314.	2.3	54
112	Preparation and Structure of Alkylideneâ^'Osmium and Hydrideâ^'Alkylidyneâ^'Osmium Complexes Containing an N-Heterocyclic Carbene Ligand. Organometallics, 2007, 26, 2129-2132.	2.3	54
113	Aromatic Osmacyclopropenefuran Bicycles and Their Relevance for the Metalâ€Mediated Hydration of Functionalized Allenes. Angewandte Chemie - International Edition, 2016, 55, 13749-13753.	13.8	54
114	Catalytic transfer hydrogenation by cationic rhodium(I) complexes. Journal of Organometallic Chemistry, 1981, 214, 399-404.	1.8	53
115	Reactions of Osmium Hydride Complexes with Terminal Alkynes: Synthesis and Catalytic Activity of OsH(.eta.2-O2CCH3)(C:CHPh)(PiPr3)2. Organometallics, 1994, 13, 1507-1509.	2.3	53
116	Ammonia Borane Dehydrogenation Promoted by a Pincer-Square-Planar Rhodium(I) Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst. Inorganic Chemistry, 2016, 55, 7176-7181.	4.0	53
117	The reduction of \hat{l}_{\pm}, \hat{l}^2 -unsaturated ketones and cyclohexadienes catalyzed by mhcl(CO)(PiPr3)2 (M = Ru,) Tj ETQ	q1 ₁₂ 0.78	4314 rgBT /O
118	Oxidative Addition of Group 14 Element Hydrido Compounds to OsH2(η2-CH2CHEt)(CO)(PiPr3)2:Â Synthesis and Characterization of the First Trihydridoâ^'Silyl, Trihydridoâ^'Germyl, and Trihydridoâ^'Stannyl Derivatives of Osmium(IV). Inorganic Chemistry, 1996, 35, 1250-1256.	4.0	52
119	Ortho-CH Activation of Aromatic Ketones, Partially Fluorinated Aromatic Ketones, and Aromatic Imines by a Trihydride-Stannyl-Osmium(IV) Complex. Organometallics, 2003, 22, 3753-3765.	2.3	52
120	OsHCl(CO)(PiPr3)2 as catalyst for ring-opening metathesis polymerization (ROMP) and tandem ROMP–hydrogenation of norbornene and 2,5-norbornadiene. Journal of Catalysis, 2004, 223, 319-327.	6.2	52
121	Câ^'H Bond Activation of Terminal Allenes: Formation of Hydride-Alkenylcarbyne-Osmium and Disubstituted Vinylidene-Ruthenium Derivatives. Organometallics, 2010, 29, 4966-4974.	2.3	52
122	Coordination and Rupture of Methyl C(sp ³)â^'H Bonds in Osmiumâ^'Polyhydride Complexes with δAgostic Interaction. Organometallics, 2007, 26, 5140-5152.	2.3	51
123	Sequential and Selective Hydrogenation of the Cαâ^'Cβand Mâ^'CαDouble Bonds of an Allenylidene Ligand Coordinated to Osmium:Â New Reaction Patterns between an Allenylidene Complex and Alcohols. Journal of the American Chemical Society, 2007, 129, 8850-8859.	13.7	51
124	Cleavage of Both C(sp ³)â^'C(sp ²) Bonds of Alkylidenecyclopropanes: Formation of Ethyleneâ^'Osmiumâ^'Vinylidene Complexes. Journal of the American Chemical Society, 2010, 132, 454-455.	13.7	51
125	Dihydrido and Trihydrido Diolefin Complexes Stabilized by the Os(PiPr3)2Unit:Â New Examples of Quantum Mechanical Exchange Coupling in Trihydrido Osmium Compounds. Journal of the American Chemical Society, 1997, 119, 9691-9698.	13.7	50
126	Oxidative Addition of HX (X = H, SiR3, GeR3, SnR3, Cl) Molecules to the Complex Os(î·5-C5H5)Cl(PiPr3)2. Organometallics, 1999, 18, 5034-5043.	2.3	50

#	Article	IF	CITATIONS
127	The Allenylidene Complex [Ru(η5-C5H5)(CCCPh2)(CO)(PiPr3)]BF4as a Precursor of Novel Pyrido[1,2-a]pyrimidinyl and 1,3-Thiazinyl Complexes. Organometallics, 2000, 19, 4327-4335.	2.3	50
128	Dehalogenation of Hexachlorocyclohexanes and Simultaneous Chlorination of Triethylsilane Catalyzed by Rhodium and Ruthenium Complexes. Organometallics, 2004, 23, 3891-3897.	2.3	50
129	New Titanium Complexes Containing a Cyclopentadienyl Ligand with a Pendant Aminoalkyl Substituent:Â Preparation, Behavior of the Amino Group, and Catalytic Hydroamination of Alkynes. Organometallics, 2005, 24, 5084-5094.	2.3	50
130	NH-Tautomerization of Quinolines and 2-Methylpyridine Promoted by a Hydride-Iridium(III) Complex: Importance of the Hydride Ligand. Organometallics, 2009, 28, 2276-2284.	2.3	50
131	An Acyl-NHC Osmium Cooperative System: Coordination of Small Molecules and Heterolytic B–H and O–H Bond Activation. Organometallics, 2015, 34, 3902-3908.	2.3	50
132	Mechanism of the hydrogenation of phenylacetylene catalyzed by [Ir(COD)(.eta.2iso-Pr2PCH2CH2OMe)]BF4. Organometallics, 1993, 12, 1823-1830.	2.3	48
133	Iridium and rhodium complexes with tetrafluorobenzobarrelene diolefins. Coordination Chemistry Reviews, 1999, 193-195, 557-618.	18.8	48
134	Dehalogenation of Polychloroarenes with HSiEt3 Catalyzed by an Homogeneous Rhodiumâ^'Triphenylphosphine System. Organometallics, 1999, 18, 1110-1112.	2.3	48
135	One-Pot Synthesis for Osmium(II) Azavinylideneâ^ Carbyne and Azavinylideneâ^ Alkenylcarbyne Complexes Starting from an Osmium(II) Hydrideâ^ Azavinylidene Compound. Organometallics, 2001, 20, 3283-3292.	2.3	48
136	Synthesis and Reactivity of Osmium Complexes Containing a Cyclopentadienyl Ligand with a Pendant Phosphine Donor Group. Organometallics, 2004, 23, 3021-3030.	2.3	48
137	Cβâ~'H Activation of Aldehydes Promoted by an Osmium Complex. Organometallics, 2004, 23, 6015-6024.	2.3	48
138	Influence of the Cis Ligand on the Hâ^'H Separation and the Rotation Barrier of the Dihydrogen in Osmium-Elongated Dihydrogen Complexes Containing an Ortho-Metalated Ketoneâ€. Organometallics, 2004, 23, 3008-3015.	2.3	48
139	C–H Bond Activation Reactions in Ketones and Aldehydes Promoted by POP-Pincer Osmium and Ruthenium Complexes. Organometallics, 2015, 34, 4908-4921.	2.3	48
140	Synthesis and mesomorphism of stilbazole complexes of rhodium(I) and iridium(I). Journal of Materials Chemistry, 1991, 1, 251.	6.7	47
141	Reactivity of MH(.eta.2-H2BH2)(CO)(PiPr3)2 (M = osmium, ruthenium) toward electrophiles: synthesis of new hydridocarbonylosmium(II) and -ruthenium(II) complexes containing triisopropylphosphine as ligand. Inorganic Chemistry, 1992, 31, 5580-5587.	4.0	47
142	From Tetrahydroborateâî' to Aminoborylvinylideneâî'Osmium Complexes via Alkynylâî'Aminoboryl Intermediates. Journal of the American Chemical Society, 2011, 133, 2250-2263.	13.7	47
143	Osmium Hydride Acetylacetonate Complexes and Their Application in Acceptorless Dehydrogenative Coupling of Alcohols and Amines and for the Dehydrogenation of Cyclic Amines. Organometallics, 2017, 36, 2996-3004.	2.3	47
144	Liquid-crystal behavior in ionic complexes of silver(I): molecular structure-mesogenic activity relationship. Chemistry of Materials, 1990, 2, 748-758.	6.7	46

#	Article	IF	CITATIONS
145	Preparation and Characterization of Osmiumâ^'Stannyl Polyhydrides:Â d4â^'d2Oxidative Addition of Neutral Molecules in a Late Transition Metal. Organometallics, 2003, 22, 2087-2096.	2.3	46
146	Osmiumâ^'Allenylidene Complexes Containing an N-Heterocyclic Carbene Ligand. Organometallics, 2008, 27, 795-798.	2.3	46
147	Synthesis and reactions of new hydridosilyliridium(III) complexes containing the diolefin tetrafluorobenzobarrelene. Organometallics, 1993, 12, 3264-3272.	2.3	45
148	Preparation and Spectroscopic and Theoretical Characterization of the Tetrahydroborate Complex OsH3(.eta.2-H2BH2)(P-i-Pr3)2. Inorganic Chemistry, 1994, 33, 3609-3611.	4.0	45
149	New Half-Sandwich Alkyl, Aryl, Aryloxide, and Propargyloxide Titanium(IV) Complexes Containing a Cyclopentadienyl Ligand with a Pendant Ether Substituent:  Behavior and Influence in the Hydroamination of Alkynes of the Ether Group. Organometallics, 2006, 25, 1448-1460.	2.3	45
150	Preparation, properties, and reactivity of dihydridosilyl(.eta.4-cycloocta-1,5-diene)iridium(III) complexes. X-ray crystal structures of the dihydrido silyl complex IrH2(SiEt3)(.eta.4-C8H12)(AsPh3) and the cyclooctenyl derivative Ir(1sigma.,4,5eta.2-C8H13)(CO)2(AsPh3). Organometallics, 1987, 6, 1751-1756.	2.3	44
151	Synthesis, Structure, and Bonding of the Unusual μ-ïƒ,ïƒ-Allenylidene Complex [Rh2(μ-OOCCH3)(μ-ïƒ,ïƒ-CCCPh2)(CO)2(PCy3)2]BF4. Organometallics, 1996, 15, 3556-3562.	2.3	44
152	Synthesis and Spectroscopic Characterization of New Hydrido and Dihydrogen Complexes of Osmium and Ruthenium Stabilized by the Tris(pyrazolyl)borate Ligand. Organometallics, 1997, 16, 4464-4468.	2.3	44
153	Cycloaddition between a Transition-Metal Phenylallenylidene Complex and Allyl Alcoholâ€. Organometallics, 1998, 17, 2297-2306.	2.3	44
154	Synthesis and Characterization of Rutheniumâ^'Osmium Complexes Containing μ-Bisalkenyl, μ-Alkenylvinylidene, and μ-Alkenylcarbene Bridge Ligands. Organometallics, 1999, 18, 1798-1800.	2.3	44
155	Ene-Type Reactions between an α-Alkenylphosphine and Terminal Alkynes Promoted by Osmium-Cyclopentadienyl Fragments. Organometallics, 2005, 24, 2030-2038.	2.3	44
156	Preparation and X-ray Structures of Alkylâ^'Titanium(IV) Complexes Stabilized by Indenyl Ligands with a Pendant Ether or Amine Substituent and Their Use in the Catalytic Hydroamination of Alkynes. Organometallics, 2007, 26, 554-565.	2.3	44
157	Osmium(III) Complexes with POP Pincer Ligands: Preparation from Commercially Available OsCl ₃ ·3H ₂ O and Their X-ray Structures. Inorganic Chemistry, 2010, 49, 8665-8667.	4.0	44
158	Hydrosilylation of phenylacetylene catalyzed by [Ir(COD)(η2-iPr2PCH2CH2OMe)][BF4]. Journal of Organometallic Chemistry, 1995, 487, 143-149.	1.8	43
159	Synthesis of Butadiene-Osmium(0) and -Ruthenium(0) Complexes by Reductive Carbon-Carbon Coupling of Two Alkenyl Fragments. Organometallics, 1995, 14, 4825-4831.	2.3	43
160	Synthesis, X-ray Structure, and Protonation of [Os(C2Ph){NH:C(Ph)C6H4}(CO)(PPr-i3)2]. Organometallics, 1995, 14, 2496-2500.	2.3	43
161	Selective protonation of the styryl ligand of RuMe{(E)-CH:CHPh}(CO)2(PiPr3)2 and migratory CO insertion in the methyl group of [RuMe(CO)2(PiPr3)2]BF4. Organometallics, 1995, 14, 4685-4696.	2.3	43
162	Reactions of the Square-Planar Compounds Ir(C2Ph)L2(PCy3) (L2= 2 CO, TFB) with HSiR3(R = Et, Ph) and Hx+1SiPh3-x(x= 1, 2):Â Stoichiometric and Catalytic Formation of Siâ^'C Bonds. Organometallics, 1996, 15, 814-822.	2.3	43

#	Article	IF	CITATIONS
163	Reactions of Ir(acac)(cyclooctene)(PCy3) with H2, HCâ‹®CR, HSiR3, and HSnPh3:Â The Acetylacetonato Ligand as a Stabilizer for Iridium(I), Iridium(III), and Iridium(V) Derivatives. Organometallics, 1996, 15, 823-834.	2.3	43
164	Reactivity of OsH2Cl2(PiPr3)2toward Diolefins:Â New Reactions Involving Câ^'H and Câ^'C Activation and Câ^'C and Câ^'P Bond Formation Processes. Organometallics, 1997, 16, 1316-1325.	2.3	43
165	Synthesis and Spectroscopic and Theoretical Characterization of the Elongated Dihydrogen Complex OsCl2(η2-H2)(NHCPh2)(PiPr3)2. Inorganic Chemistry, 1998, 37, 5033-5035.	4.0	43
166	Generation of Functionally Substituted Cyclopentadienyl Ligands in Osmium(IV) Chemistryâ€. Organometallics, 2001, 20, 240-253.	2.3	43
167	Formation of Cationic Half-Sandwich OsmiumⰒVinylidene Complexes from [Os(η5-C5H5)(PiPr3)2]+ and Terminal Alkynes. Organometallics, 2001, 20, 4291-4294.	2.3	42
168	Câ^'N and Câ^'C Coupling Reactions:  Preparation of New N-Heterocyclic Ruthenium Derivatives. Organometallics, 2003, 22, 162-171.	2.3	42
169	Dehydrogenation of a Coordinated Alkylphosphine as a Method to Prepare Cyclopentadienyl-α- alkenylphosphine-osmium Complexes. Organometallics, 2004, 23, 1416-1423.	2.3	42
170	Preparation of [C,N,O]-Pincer Osmium Complexes by Alkylidene Metathesis with a Methyl Group of 2,6-Diacetylpyridine. Organometallics, 2007, 26, 3082-3084.	2.3	42
171	NH-Tautomerization of 2-Substituted Pyridines and Quinolines on Osmium and Ruthenium: Determining Factors and Mechanism. Organometallics, 2008, 27, 6236-6244.	2.3	42
172	Reactions of a Dihydrideâ^'Osmium(IV) Complex with Aldehydes: Influence of the Substituent at the Carbonyl Group. Organometallics, 2008, 27, 799-802.	2.3	42
173	Multiple Câ^'H Bond Activation of Phenyl-Substituted Pyrimidines and Triazines Promoted by an Osmium Polyhydride: Formation of Osmapolycycles with Three, Five, and Eight Fused Rings. Organometallics, 2010, 29, 976-986.	2.3	42
174	Synthesis of mononuclear complexes of Ru and Os and heterobimetallic $M\hat{a}\in M\hat{a}\in M$	Tj ETQq0 1.1	0 0 rgBT /Ov 41
175	Rectangular and hexagonal columnar mesophases in dinuclear rhodium(II) (alkyloxy)benzoate complexes. Inorganic Chemistry, 1992, 31, 732-737.	4.0	41
176	Five-Coordinate Complexes MHCl(CO)(PiPr3)2(M = Os, Ru) as Precursors for the Preparation of New Hydridoâ~' and Alkenylâ~'Metallothiol and Monothioâ~'β-Diketonato Derivatives. Organometallics, 1997, 16, 5748-5755.	2.3	41
177	Allenylidene Ligand of [Ru(η5-C5H5)(CCCPh2)(CO)(PPri3)]BF4as Entry to Novel Unsaturated η1-Carbon Ligands Containing Azetidine and Hexahydroquinoline Skeletons. Organometallics, 1999, 18, 1606-1614.	2.3	41
178	Câ~'C Coupling of the Alkynyl and Alkenyl Fragments of Os(C2CO2CH3){CHCHC(O)OCH3}(CO)(PiPr3)2by Action of HCl:A The Vinylidene [Os{CHCHC(O)OCH3}(CCHCO2CH3)(CO)(PiPr3)2]BF4as Intermediate. Organometallics, 1999, 18, 5176-5179.	2.3	41
179	Regioselective Addition of Dienes to the Cβâ^'CγDouble Bond of the Allenylidene Ligand of [Ru(η5-C5H5)(CCCPh2)(CO)(PiPr3)]BF4. Organometallics, 2002, 21, 1841-1848.	2.3	41
180	Hydrosilylation of alkenes by iridium complexes. Journal of Molecular Catalysis, 1986, 37, 151-156.	1.2	40

#	Article	IF	CITATIONS
181			

#	Article	IF	CITATIONS
199	Synthesis and catalytic activity of heterodinuclear Ru-Ir and Ru-Rh complexes. Crystal structure of [H(CO)(PPh3)2Ru(I¼-Cl)(μ-pz)Ir(TFB)] (pz = pyrazolate, TFB = tetrafluorobenzobarrelene). Journal of Organometallic Chemistry, 1990, 388, 365-377.	1.8	35
200	Unusual Activation of 1,1-Diphenyl-2-propyn-1-ol Mediated by the Os(η5-C5H5) Unit. Organometallics, 1998, 17, 3141-3142.	2.3	35
201	(NHC)Palladium Complexes from Hydroxyâ€Functionalized Imidazolium Salts as Catalyst for the Microwaveâ€Accelerated Fluorineâ€Free Hiyama Reaction. European Journal of Organic Chemistry, 2011, 2011, 7174-7181.	2.4	35
202	Preparation of Tris-Heteroleptic Iridium(III) Complexes Containing a Cyclometalated Aryl-N-Heterocyclic Carbene Ligand. Inorganic Chemistry, 2018, 57, 10744-10760.	4.0	35
203	Preparation of IrH(diene)L2 compounds via methoxyiridium complexes: Catalysts for hydrogen transfer reactions. Journal of Organometallic Chemistry, 1986, 316, 343-349.	1.8	34
204	Oxidative Addition of HSnR3 (R = Ph, Bu) to the Square-Planar Iridium(I) Compounds Ir(XR)(TFB)(PCy3) (XR = OMe, OEt, OCHMe2, OPh, SPr) and Ir(C2Ph)L2(PCy3) (L2 = TFB, 2CO). Organometallics, 1995, 14, 3486-3496.	2.3	34
205	[H(EtOH)2][{OsCl(η4-COD)}2(Î ¹ /4-H)(Î ¹ /4-Cl)2] as an Intermediate for the Preparation of [OsCl2(COD)]x and Its Activity as an Ionic Hydrogenation and Etherification Catalyst. Organometallics, 2008, 27, 3029-3036.	2.3	34
206	N–H and N–C Bond Activation of Pyrimidinic Nucleobases and Nucleosides Promoted by an Osmium Polyhydride. Inorganic Chemistry, 2012, 51, 5975-5984.	4.0	34
207	Osmium(II)–Bis(dihydrogen) Complexes Containing <i>C</i> _{aryl} , <i>C</i> _{NHC} –Chelate Ligands: Preparation, Bonding Situation, and Acidity. Organometallics, 2015, 34, 778-789.	2.3	34
208	Square-Planar Alkylidyne–Osmium and Five-Coordinate Alkylidene–Osmium Complexes: Controlling the Transformation from Hydride-Alkylidyne to Alkylidene. Journal of the American Chemical Society, 2016, 138, 9720-9728.	13.7	34
209	Preparation of Phosphorescent Osmium(IV) Complexes with N,N′,C- and C,N,C′-Pincer Ligands. Organometallics, 2017, 36, 1848-1859.	2.3	34
210	Rhodium complexes containing 1-(4-pyridylmethylene)-4-alkoxyanilines as ligands: crystal structure of an unusual square-planar cluster of 64 electrons, Rh4(OOCCH3)4(CO)4(NC5H4CH:NC6H4OC14H29)4. Organometallics, 1991, 10, 1794-1799.	2.3	33
211	Lewis Base-Assisted Hydride-Carbyne to Olefin Transformation versus Carbene Formation. Organometallics, 2002, 21, 5681-5684.	2.3	33
212	Preparation of Half-Sandwich Alkylâ^Titanium(IV) Complexes Stabilized by a Cyclopentadienyl Ligand with a Pendant Phosphine Tether and Their Use in the Catalytic Hydroamination of Aliphatic and Aromatic Alkynes. Organometallics, 2006, 25, 4079-4089.	2.3	33
213	Olefinâ^'Alkylidene Equilibrium of 2-Vinylpyridine in Osmium- and Ruthenium-Hydrido-Tris(pyrazolyl)borate and Osmium-Cyclopentadienyl Complexes. Organometallics, 2009, 28, 5941-5951.	2.3	33
214	Formation of Osmiumâ^' and Rutheniumâ^'Cyclobutylidene Complexes by Ring Expansion of Alkylidenecyclopropanes. Journal of the American Chemical Society, 2009, 131, 15572-15573.	13.7	33
215	CⰒH Bond Activation Reactions in π-AlleneⰒOsmiumⰒTriisopropylphosphine Complexes with Cyclopentadienyl or Hydridotris(pyrazolyl)borate Ligands: Formation of Isopropenyldiisopropylphosphine versus Hydrideâ [~] 'Alkenylcarbyne Derivatives. Organometallics, 2010, 29. 4071-4079.	2.3	33
216	Selective C–Cl Bond Oxidative Addition of Chloroarenes to a POP–Rhodium Complex. Organometallics, 2017, 36, 114-128.	2.3	33

#	Article	IF	CITATIONS
217	Osmium Catalysts for Acceptorless and Base-Free Dehydrogenation of Alcohols and Amines: Unusual Coordination Modes of a BPI Anion. Organometallics, 2018, 37, 603-617.	2.3	33
218	Evidence for a Bis(Elongated σ)-Dihydrideborate Coordinated to Osmium. Inorganic Chemistry, 2018, 57, 4482-4491.	4.0	33
219	Rhodium(I) complexes containing 4-pyridylmethylene-4′-alkoxyanilines as ligands: Formation of rhodium containing liquid crystals by coordination of non-mesogenic organic ligands. Journal of Organometallic Chemistry, 1990, 387, 103-111.	1.8	32
220	Reaction of a Cationic Osmium(IV) Dihydride with Ethylene:  Formation and Structure of the Novel Tetraethylene Dimer Complex [{(PiPr3)(η2-C2H4)2Os}2(μ-OH)2(μ-O2CCH3)]BF4. Organometallics, 2000, 19, 3260-3262.	2.3	32
221	Aromatic Câ^'H Bond Activation of 2-Methylpyridine Promoted by an Osmium(VI) Complex: Formation of an Î- ² (<i>N</i> , <i>C</i>)-Pyridyl Derivative. Organometallics, 2008, 27, 6188-6192.	2.3	32
222	Chelated Assisted Metal-Mediated N–H Bond Activation of β-Lactams: Preparation of Irida-, Rhoda-, Osma-, and Ruthenatrinems. Organometallics, 2014, 33, 1820-1833.	2.3	32
223	Synthesis of Rh(acac)H(GeEt3)(PCy3) and Rh(acac)H(SnPh3)(PCy3) and Their Reactions with Alkynes. Organometallics, 1996, 15, 3670-3678.	2.3	31
224	Synthesis and reactivity of [Oî€sH{C6H4(CHCHH) }(CO)(PPri3)2] and the formato compounds [Os{(E )-CHCHPh}(ݷ2-O 2CH)(CO)(PPri3)2] and [OsH(ݷ2-O2CH)(CO)(PPri3) 2]*. Journal of the Chemical Society Dalton Transactions, 1997, , 181-192.	1.1	31
225	Synthesis, Characterization, and Theoretical Study of Stable Hydrideâ^'Azavinylidene Osmium(IV) Complexes. Organometallics, 2000, 19, 3100-3108.	2.3	31
226	Dehalogenation of polychloroarenes with sodium formate in propan-2-ol catalyzed by RhCl(PPh3)3. New Journal of Chemistry, 2001, 25, 775-776.	2.8	31
227	Preparation, Spectroscopic Characterization, X-ray Structure, and Theoretical Investigation of HydrideⰒ, DihydrogenⰒ, and AcetoneⰒOsTp Complexes:  A Hydridotris(pyrazolyl)borateâ°'Cyclopentadienyl Comparison. Organometallics, 2007, 26, 4498-4509.	2.3	31
228	Preparation, Hydrogen Bonds, and Catalytic Activity in Metal-Promoted Addition of Arylboronic Acids to Enones of a Rhodium Complex Containing an NHC Ligand with an Alcohol Function. Organometallics, 2012, 31, 6154-6161.	2.3	31
229	Osmium(II) Complexes Containing a Dianionic CCCC-Donor Tetradentate Ligand. Organometallics, 2016, 35, 3981-3995.	2.3	31
230	Substitution and Oxidative Addition Reactions of the Monoolefin Complex Rh(acac)(cyclooctene)(PCy3) Including the X-ray Structure Analyses of Rh(acac)(PCy3)2and [Rh(acac){(E)-CHCHCy}(PCy3)2]BF4. Organometallics, 1996, 15, 3436-3444.	2.3	30
231	Synthesis, X-ray structure, and polymerisation activity of a bis(oxazolinyl)pyridine chromium(iii) complex. New Journal of Chemistry, 2002, 26, 1542-1544.	2.8	30
232	Preparation and Characterization of 4-Azoniaheptatrienyl, 4-Azaheptatrienyl, Ruthenapyrrolinone, and Pyrrolinyl Complexes of Ruthenium. Organometallics, 2003, 22, 5274-5284.	2.3	30
233	Reactions of an Osmium-Hexahydride Complex with Cytosine, Deoxycytidine, and Cytidine: The Importance of the Minor Tautomers. Inorganic Chemistry, 2012, 51, 9522-9528.	4.0	30
234	Osmium-Promoted Dehydrogenation of Amine–Boranes and B–H Bond Activation of the Resulting Amino–Boranes. Organometallics, 2014, 33, 1104-1107.	2.3	30

Т

#	Article	IF	CITATIONS
235	2-Azetidinones as Precursors of Pincer Ligands: Preparation, Structure, and Spectroscopic Properties of CC′N-Osmium Complexes. Inorganic Chemistry, 2015, 54, 10998-11006.	4.0	30
236	Amide-Directed Formation of Five-Coordinate Osmium Alkylidenes from Alkynes. Organometallics, 2016, 35, 91-99.	2.3	30
237	Hydrogenation of benzylideneacetone catalyzed by chlorodihydridobis(diisopropylphosphine)iridium: kinetic evidence for the participation of an iridiumeta.2-dihydrogen complex in the activation of molecular hydrogen. Inorganic Chemistry, 1992, 31, 4013-4014.	4.0	29
238	Reactions of [RuH(η3î—,C3H5)(CO)(PiPr3)2] and [Ru(η2î—,C2Ph2)(CO)(PiPr3)2] with terminal alkynes: synthesis and characterization of new five- and six-coordinate bis(alkynyl) and alkynyl(vinyl) derivatives of ruthenium(II). Journal of Organometallic Chemistry, 1995, 498, 199-206.	1.8	29
239	Cationic Dihydride Boryl and Dihydride Silyl Osmium(IV) NHC Complexes: A Marked Diagonal Relationship. Organometallics, 2013, 32, 2744-2752.	2.3	29
240	Hydroboration and Hydrogenation of an Osmium–Carbon Triple Bond: Osmium Chemistry of a Bis-σ-Borane. Organometallics, 2015, 34, 547-550.	2.3	29
241	Azole Assisted C–H Bond Activation Promoted by an Osmium-Polyhydride: Discerning between N and NH. Organometallics, 2015, 34, 1898-1910.	2.3	29
242	A Capped Octahedral MHC ₆ Compound of a Platinum Group Metal. Chemistry - A European Journal, 2016, 22, 9106-9110.	3.3	29
243	<i>mer</i> , <i>fac</i> , and Bidentate Coordination of an Alkyl-POP Ligand in the Chemistry of Nonclassical Osmium Hydrides. Inorganic Chemistry, 2017, 56, 676-683.	4.0	29
244	Iridium liquid crystal complexes by co-ordination of non-mesogenic orgainic ligands. Journal of the Chemical Society Chemical Communications, 1989, , 55.	2.0	28
245	Synthesis, molecular structure and reactivity of the octahedral iridium(III) compound [IrH(.eta.1,.eta.3-C8H12)(dppm)] [dppm = bis(diphenylphosphino)methane]. Organometallics, 1992, 11, 3659-3664.	2.3	28
246	Synthesis and Characterization of the Allenylidene Compounds [Ir(diene)(CCCPh2)(PR3)]BF4(diene =) Tj ETQq0 0 Mixed-Ligand Complexes of the Type [Ir(diene)L(PR3)]+Containing an Unsaturated η1-Carbon Ligand. Organometallics 1997 16 796-799	0 rgBT /C 2.3	Overlock 10 28
247	H···H Interaction in Four-Membered Pâ^'H···Hâ^'M (M = Osmium, Ruthenium) Rings. Organometallics, 1998 17, 3346-3355.	'2.3	28
248	Simultaneous Dehalogenation of Polychloroarenes and Chlorination of HSiEt3 Catalyzed by Complexes of the Groups 8 and 9. Journal of Catalysis, 2000, 195, 187-192.	6.2	28
249	Synthesis, Molecular Structure and Catalytic Activity of Six-Coordinate Chloro(hydrido)- and Dihydridoruthenium(II) and -osmium(II) Complexes with the Chiral Ligands PiPr2NH(Me)Ph, (S,S)-Chiraphos and (S,S,)-Diop. European Journal of Inorganic Chemistry, 2004, 2004, 2477-2487.	2.0	28
250	A Useful Access to the Chemistry of the Indenyl-Osmium-Triisopropylphosphine Moiety. Organometallics, 2005, 24, 5780-5783.	2.3	28
251	Osmium-Acyl Decarbonylation Promoted by Tp-Mediated Allenylidene Abstraction: A New Role of the Tp Ligand. Organometallics, 2014, 33, 4057-4066.	2.3	28
252	Ruthenium-Catalyzed Oxidative Amidation of Alkynes to Amides. Organic Letters, 2019, 21, 5346-5350.	4.6	28

#	Article	IF	CITATIONS
253	Barreleneiridium(I) complexes. Crystal structures of [Ir(Me3TFB)(η6-C6H4Me2)]ClO4 and [Ir(TFB)(η5-PhNPh2)]BF4·CH2Cl2 (TFB = tetrafluorobenzobarrelene). Journal of Organometallic Chemistry, 1984, 273, 111-128.	1.8	27
254	Iridium(I) complexes with tetrafluorobenzobarrelene. Journal of Organometallic Chemistry, 1984, 263, 109-120.	1.8	27
255	Synthesis of the first metal dihydrogen M(.eta.2-H2) complexes containing sulfur-donor ligands. Inorganic Chemistry, 1993, 32, 3793-3794.	4.0	27
256	lridium(I), Iridium(III), and Iridium(V) Complexes Containing the (2-Methoxyethyl)cyclopentadienyl Ligand. Organometallics, 2006, 25, 5131-5138.	2.3	27
257	Preparation of Half-Sandwich Osmium-Allyl Complexes by Consecutive Câ^'C Bond Formation and Câ^'H Bond Activation Reactions. Organometallics, 2006, 25, 693-705.	2.3	27
258	Preparation of Half-Sandwich Osmium Complexes by Deprotonation of Aromatic and Pro-aromatic Acids with a Hexahydride BrĀ,nsted Base. Organometallics, 2011, 30, 3844-3852.	2.3	27
259	Reactions of Osmium–Pinacolboryl Complexes: Preparation of the First Vinylideneboronate Esters. Organometallics, 2012, 31, 2965-2970.	2.3	27
260	Hydroosmiation of Allenes and Reductive Elimination of Olefin in Unsaturated Osmium(IV) Polyhydrides: Hydride versus Chloride. Organometallics, 2013, 32, 2567-2575.	2.3	27
261	Dihydrobiphenylenes through Rutheniumâ€Catalyzed [2+2+2] Cycloadditions of <i>ortho</i> â€Alkenylarylacetylenes with Alkynes. Angewandte Chemie - International Edition, 2014, 53, 1841-1844.	13.8	27
262	Preparation via a NHC Dimer Complex, Photophysical Properties, and Device Performance of Heteroleptic Bis(tridentate) Iridium(III) Emitters. Organometallics, 2019, 38, 2738-2747.	2.3	27
263	Synthesis, characterization, and reactivity of rhodium carboxylate dimers [Rh(.muOOCCR3)(CO)(PCy3)]2 (R = H, F). X-ray crystal structure of [Rh2(.muOOCCH3)(.mueta.1:.eta.2-C2Ph)(CO)2(PCy3)2]. Organometallics, 1993, 12, 266-275.	2.3	26
264	Azavinylidene and Azavinylidene-Bridged Compounds of Iridium and Rhodium. Organometallics, 1994, 13, 3315-3323.	2.3	26
265	Preparation and Characterization of a Monocyclopentadienyl Osmiumâ~Allenylcarbene Complex. Organometallics, 2007, 26, 6009-6013.	2.3	26
266	One-Pot Dehydrogenative Addition of Isopropyl to Alkynes Promoted by Osmium:Â Formation of γ-(η3-Allyl)-α-Alkenylphosphine Derivatives Starting from a Dihydrideâ^'Dihydrogenâ^'Triisopropylphosphine Complex. Organometallics, 2007, 26, 2193-2202.	2.3	26
267	Arene Osmium Complexes with Ethacrynic Acid-Modified Ligands: Synthesis, Characterization, and Evaluation of Intracellular Glutathione <i>S</i> -Transferase Inhibition and Antiproliferative Activity. Organometallics, 2016, 35, 1046-1056.	2.3	26
268	Elongated Dihydrogen versus Compressed Dihydride in Osmium Complexes. Chemistry - A European Journal, 2017, 23, 1526-1530.	3.3	26
269	A Novel Method To Prepare Hydrideâ ´ Phosphinito Complexes. Organometallics, 2000, 19, 4650-4652.	2.3	26
270	Pyrazolato-iridium(III) complexes. Journal of Organometallic Chemistry, 1994, 467, 151-159.	1.8	25

#	Article	IF	CITATIONS
271	Reductive Elimination of [Ph2CCCHPR3]BF4from the Rhodium(III)â^Allenyl Derivatives [Rh(acac){CHCCPh2}(PR3)2]BF4(PR3= PCy3, PiPr3). Organometallics, 1997, 16, 4572-4580.	2.3	25
272	Influence of the Solvent in the Synthesis of Osmium Complexes Containing Cyclopentadienyl Ligands with a Pendant Donor Group. Organometallics, 2004, 23, 5633-5636.	2.3	25
273	Câ^'C Bond Activation of the NHC Ligand of an Osmiumâ^'Amido Complex. Organometallics, 2010, 29, 4517-4523.	2.3	25
274	Mechanistic Insight into the Facilitation of Î²â€Łactam Fragmentation through Metal Assistance. Chemistry - A European Journal, 2015, 21, 16781-16785.	3.3	25
275	Preparation of Phosphorescent Iridium(III) Complexes with a Dianionic C,C,C,C-Tetradentate Ligand. Inorganic Chemistry, 2018, 57, 3720-3730.	4.0	25
276	Selective formation of cis-PhCHî—»CH (SiEt3) by reaction of PhCî—¼CH with the stoichiometric amount of HSiEt3, in the presence of ruthenium catalysts. Journal of Molecular Catalysis A, 1995, 96, 21-23.	4.8	24
277	Synthesis and Structure of Ru{Ph6Sn3(.muOMe)2}(.eta.2-H2)(CO)(PiPr3) Containing a Tridentate Tin Donor Ligand and Coordinated Dihydrogen. Journal of the American Chemical Society, 1995, 117, 3619-3620.	13.7	24
278	An Entry to Stable Mixed Phosphine–Osmium–NHC Polyhydrides. Inorganic Chemistry, 2016, 55, 5062-5070.	4.0	24
279	Influence of the Bite Angle of Dianionic C,N,C-Pincer Ligands on the Chemical and Photophysical Properties of Iridium(III) and Osmium(IV) Hydride Complexes. Organometallics, 2019, 38, 3707-3718.	2.3	24
280	Synthesis and Characterization of IrH2{Si(OTf)Ph2}(TFB)(PR3) (PR3 = PiPr3, PCy3):  First Base-Stabilized Silylene Complexes of Iridium. Organometallics, 1996, 15, 2185-2188.	2.3	23
281	Formation of an Asymmetric Acyclic Osmiumâ^'Dienylcarbene Complex. Organometallics, 2008, 27, 6367-6370.	2.3	23
282	Osmium-Catalyzed Allylic Alkylation. Organometallics, 2008, 27, 4892-4902.	2.3	23
283	Aromatization of a Dihydro-3-ruthenaindolizine Complex. Organometallics, 2009, 28, 4876-4879.	2.3	23
284	Dehydrative Cyclization of Alkynals: Vinylidene Complexes with the C _β Incorporated into Unsaturated Five―or Sixâ€Membered Rings. Angewandte Chemie - International Edition, 2011, 50, 9712-9715.	13.8	23
285	Anti-Markovnikov 1,3-CH Addition of Allenes to Allenes: A Straightforward Method To Prepare Osmium–Dienylcarbene Complexes. Organometallics, 2012, 31, 1991-2000.	2.3	23
286	Osmium-Mediated Direct C–H Bond Activation at the 8-Position of Quinolines. Organometallics, 2016, 35, 1597-1600.	2.3	23
287	β-Borylalkenyl <i>Z</i> – <i>E</i> Isomerization in Rhodium-Mediated Diboration of Nonfunctionalized Internal Alkynes. Organometallics, 2018, 37, 1970-1978	2.3	23
288	Recent Advances in Synthesis of Molecular Heteroleptic Osmium and Iridium Phosphorescent Emitters. European Journal of Inorganic Chemistry, 2021, 2021, 4731-4761.	2.0	23

#	Article	IF	CITATIONS
289	Hydrogen-transfer catalytic synergism in binuclear complexes containing 2,2'-biimidazolate as a bridging ligand. Organometallics, 1992, 11, 702-705.	2.3	22
290	Synthesis and X-ray Structure of the Unusual Cysteine-Complex OsH2{OC(=O)CH[NHC(=O)CH3]CH2S}(PiPr3)2. Inorganic Chemistry, 1995, 34, 1004-1006.	4.0	22
291	Synthesis and reactivity of new benzophenone imine derivatives containing the Ru(CO)(PiPr3)2 unit. Journal of Organometallic Chemistry, 1996, 526, 73-83.	1.8	22
292	Mechanism of the hydrogenation of 2,5-norbornadiene catalyzed by [Rh(NBD)(PPh3)2]BF4 in dichloromethane: a kinetic and spectroscopic investigation. Journal of Organometallic Chemistry, 2000, 599, 178-184.	1.8	22
293	Preparation and Characterization of Novel Osâ^'Diolefin Dimers:  New Entry to Osâ^'Cyclooctadiene Complexes. Inorganic Chemistry, 2006, 45, 10162-10171.	4.0	22
294	Hydride Alkenylcarbyne Osmium Complexes versus Cyclopentadienyl Type Half-Sandwich Ruthenium Derivatives. Organometallics, 2011, 30, 1930-1941.	2.3	22
295	Reactions of an Osmium Bis(dihydrogen) Complex under Ethylene: Phosphine Addition to a C–C Double Bond and C–H Bond Activation of Fluoroarenes. Organometallics, 2011, 30, 5710-5715.	2.3	22
296	Perfluoro-tagged rhodium and ruthenium nanoparticles immobilized on silica gel as highly active catalysts for hydrogenation of arenes under mild conditions. New Journal of Chemistry, 2013, 37, 278-282.	2.8	22
297	η ¹ â€Arene Complexes as Intermediates in the Preparation of Molecular Phosphorescent Iridium(III) Complexes. Chemistry - A European Journal, 2017, 23, 15729-15737.	3.3	22
298	Base-Free and Acceptorless Dehydrogenation of Alcohols Catalyzed by an Iridium Complex Stabilized by a <i>N</i> , <i>N</i> , <i>N</i> -Osmaligand. Organometallics, 2018, 37, 2732-2740.	2.3	22
299	Rhodium-Mediated Dehydrogenative Borylation–Hydroborylation of Bis(alkyl)alkynes: Intermediates and Mechanism. Organometallics, 2019, 38, 2062-2074.	2.3	22
300	Rhodium(I) complexes with the 2,2 $\hat{\epsilon}^2$ -bipyrimidine ligand. Polyhedron, 1987, 6, 1427-1431.	2.2	21
301	Kinetic studies on the selective hydrogenation of phenylacetylene catalyzed by [Rh(NBD)(PPh3)2]BF4 (NBD=2,5-norbornadiene). Journal of Organometallic Chemistry, 1998, 551, 49-53.	1.8	21
302	The Cyclopentadienyl-Osmium Moiety as Template for the Formation of a Dihydronaphthylphosphine by Coupling between Phenylacetylene and an α-Alkenylphosphine. Organometallics, 2005, 24, 5180-5183.	2.3	21
303	Preparation, Structure, Bonding, and Preliminary Reactivity of a Six-Coordinate d ⁴ Osmium–Boryl Complex. Organometallics, 2012, 31, 4646-4649.	2.3	21
304	Alkenylation of 2-Methylpyridine via Pyridylidene–Osmium Complexes. Organometallics, 2012, 31, 8618-8626.	2.3	21
305	B–H activation and H–H formation: two consecutive heterolytic processes on an osmium–hydrogensulfide bond. Chemical Communications, 2013, 49, 7543.	4.1	21
306	Selective Synthesis and Photophysical Properties of Phosphorescent Heteroleptic Iridium(III) Complexes with Two Different Bidentate Groups and Two Different Monodentate Ligands. Organometallics, 2017, 36, 1743-1755.	2.3	21

#	Article	IF	CITATIONS
307	Tetrafluorobenzobarreleneiridium complexes with 1,10- phenanthroline,2,2′-bipyridine and diketonate		

#	Article	IF	CITATIONS
325	Synthesis and crystal structure of [Ir(acac-C3)(COD)(phen)]. Journal of Organometallic Chemistry, 1983, 258, 357-366.	1.8	18
326	Dioxygen Activation by an Osmium-dihydride:Â Preparation and Characterization of a d4Square-Planar Complex. Journal of the American Chemical Society, 2003, 125, 13344-13345.	13.7	18
327	Suzuki–Miyaura Cross-Coupling Reactions for Increasing the Efficiency of Tris-Heteroleptic Iridium(III) Emitters. Organometallics, 2019, 38, 2883-2887.	2.3	18
328	Direct Câ^'H Borylation of Arenes Catalyzed by Saturated Hydrideâ€Borylâ€Iridiumâ€POP Complexes: Kinetic Analysis of the Elemental Steps. Chemistry - A European Journal, 2020, 26, 12632-12644.	3.3	18
329	Cationic iridium(I) complexes with 1,5-cyclooctadiene and nitrogen ligands. Inorganica Chimica Acta, 1983, 73, 275-279.	2.4	17
330	Addition of H2SiPh2 to Ir(acac)(.eta.2-CH3O2C-C.tplbond.C-CO2CH3)(PR3): Synthesis and Characterization of [cyclic] Ir(acac){C[CH(OCH3)OSiPh2]:CHCO2CH3}(PR3) (R = CHMe2, cyclohexyl). Organometallics, 1995, 14, 263-268.	2.3	17
331	Synthesis and Characterization of OsH2Cl[κN,κO-(ONCR2)](PiPr3)2(CR2= C(CH2)4CH2, R = CH3): Influence of the L2Ligand on the Nature of the H2Unit in OsH2ClL2(PiPr3)2(L2= ONCR2, NHC(Ph)C6H4) Complexes. Organometallics, 1999, 18, 4296-4303.	2.3	17
332	Monocationic Trihydride and Dicationic Dihydrideâ^'Dihydrogen and Bis(dihydrogen) Osmium Complexes Containing Cyclic and Acyclic Triamine Ligands: Influence of the Nâ^'Osâ^'N Angles on the Hydrogenâ^'Hydrogen Interactions. Inorganic Chemistry, 2009, 48, 2677-2686.	4.0	17
333	Dicationic Alkylideneâ^', Olefinâ^', and Alkoxyalkenylcarbeneâ^'Osmium Complexes Stabilized by a NHC Ligand. Organometallics, 2010, 29, 876-882.	2.3	17
334	Unprecedented Addition of Tetrahydroborate to an Osmium–Carbon Triple Bond. Organometallics, 2014, 33, 2689-2692.	2.3	17
335	Reactions of an Osmium(IV)-Hydroxo Complex with Amino-Boranes: Formation of Boroxide Derivatives. Organometallics, 2019, 38, 310-318.	2.3	17
336	Kinetic Analysis and Sequencing of Si–H and C–H Bond Activation Reactions: Direct Silylation of Arenes Catalyzed by an Iridium-Polyhydride. Journal of the American Chemical Society, 2020, 142, 19119-19131.	13.7	17
337	Repercussion of a 1,3-Hydrogen Shift in a Hydride-Osmium-Allenylidene Complex. Organometallics, 2021, 40, 1523-1537.	2.3	17
338	Alternative Conceptual Approach to the Design of Bifunctional Catalysts: An Osmium Germylene System for the Dehydrogenation of Formic Acid. Inorganic Chemistry, 2021, 60, 16860-16870.	4.0	17
339	Selectivity of Allenylidene versus Butadienyl Protonation in an Osmiumâ^'Bisphosphine System. Organometallics, 2009, 28, 2107-2111.	2.3	16
340	Osmium-Catalyzed Oxidation of Primary Alcohols with Molecular Oxygen. Organometallics, 2011, 30, 6402-6407.	2.3	16
341	Dehydrogenative Addition of Aldehydes to a Mixed NHC-Osmium-Phosphine Hydroxide Complex: Formation of Carboxylate Derivatives. Organometallics, 2016, 35, 2171-2173.	2.3	16
342	Insertion of Diphenylacetylene into Rh–Hydride and Rh–Boryl Bonds: Influence of the Boryl on the Behavior of the β-Borylalkenyl Ligand. Organometallics, 2019, 38, 4183-4192.	2.3	16

#	Article	IF	CITATIONS
343	Dihydroboration of Alkyl Nitriles Catalyzed by an Osmium-Polyhydride: Scope, Kinetics, and Mechanism. Organometallics, 2020, 39, 3864-3872.	2.3	16
344	Reactions of [IrH2(Me2CO)(Hpz)(PPh3)2]BF4 with alkynes: synthesis of new hydride-vinyl iridium(III) complexes. Journal of Organometallic Chemistry, 1994, 466, 249-257.	1.8	15
345	Synthesis and Characterization of New Hydridoiridium Complexes Containing Carboxylate Ligands. Inorganic Chemistry, 1994, 33, 3473-3480.	4.0	15
346	Synthesis, reactivity and catalytic activity of [RuH(η1-OCMe2)(CO)2(PPri3)2]BF4. Journal of the Chemical Society Dalton Transactions, 1995, , 2171-2181.	1.1	15
347	Mono- and dinuclear osmium N,N′-di- and tetraphenylbipyridyls and extended bipyridyls. Synthesis, structure and electrochemistry. Dalton Transactions, 2013, 42, 3597.	3.3	15
348	Osmium Models of Intermediates Involved in Catalytic Reactions of Alkylidenecyclopropanes. Organometallics, 2013, 32, 4851-4861.	2.3	15
349	Boryl-Dihydrideborate Osmium Complexes: Preparation, Structure, and Dynamic Behavior in Solution. Organometallics, 2015, 34, 941-946.	2.3	15
350	Formation of Dinuclear Iridium Complexes by NHC-Supported C–H Bond Activation. Organometallics, 2017, 36, 699-707.	2.3	15
351	Reduction of Benzonitriles via Osmium–Azavinylidene Intermediates Bearing Nucleophilic and Electrophilic Centers. Inorganic Chemistry, 2019, 58, 8673-8684.	4.0	15
352	Phosphorescent Iridium(III) Complexes with a Dianionic C,C′,N,N′-Tetradentate Ligand. Inorganic Chemistry, 2020, 59, 12286-12294.	4.0	15
353	Preparation and Photophysical Properties of <i>Bis</i> (tridentate) Iridium(III) Emitters: Pincer Coordination of 2,6-Di(2-pyridyl)phenyl. Inorganic Chemistry, 2020, 59, 3838-3849.	4.0	15
354	Osmium-Promoted Transformation of Alkyl Nitriles to Secondary Aliphatic Amines: Scope and Mechanism. Organometallics, 2020, 39, 2177-2188.	2.3	15
355	Surface-bound organometallic rhodium precursors for 1-hexene hydrogenation. Applied Organometallic Chemistry, 1990, 4, 157-162.	3.5	14
356	Preparation and Full Characterization of a Tetrahydride-bis(stannyl)-osmium(VI) Derivative. Organometallics, 2004, 23, 1453-1456.	2.3	14
357	Ring Expansion versus <i>exo</i> â^' <i>endo</i> Isomerization in (2-Pyridyl)methylenecyclobutane Coordinated to Hydrido(trispyrazolyl)borate- and Cyclopentadienyl-Osmium Complexes. Organometallics, 2010, 29, 2372-2376.	2.3	14
358	Aromatic Osmacyclopropenefuran Bicycles and Their Relevance for the Metalâ€Mediated Hydration of Functionalized Allenes. Angewandte Chemie, 2016, 128, 13953-13957.	2.0	14
359	Pyridyl-Directed C–H and C–Br Bond Activations Promoted by Dimer Iridium-Olefin Complexes. Organometallics, 2018, 37, 3770-3779.	2.3	14
360	Redox-Assisted Osmium-Promoted C–C Bond Activation of Alkylnitriles. Organometallics, 2018, 37, 2014-2017.	2.3	14

#	Article	IF	CITATIONS
361	C(sp ³)–Cl Bond Activation Promoted by a POP-Pincer Rhodium(I) Complex. Organometallics, 2019, 38, 3074-3083.	2.3	14
362	N–H and C–H Bond Activations of an Isoindoline Promoted by Iridium- and Osmium-Polyhydride Complexes: A Noninnocent Bridge Ligand for Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols. Organometallics, 2020, 39, 2719-2731.	2.3	14
363	Cycloosmathioborane Compounds: Other Manifestations of the Hückel Aromaticity. Inorganic Chemistry, 2019, 58, 2265-2269.	4.0	14
364	Synthesis and structure of the unusual 30-electron homobinuclear vinylidene-bridged rhodium complexes [Rh2(.muOOCCH3)(.muC:CHR)(CO)2(PCy3)2]BF4. Organometallics, 1993, 12, 4219-4222.	2.3	13
365	Behavior of OsH ₂ Cl ₂ (P ^{<i>i</i>} Pr ₃) ₂ in Acetonitrile: The Importance of the Small Details. Organometallics, 2009, 28, 1582-1585.	2.3	13
366	Selective <i>meta</i> -C–H Bond Activation of Substituted 1,3-Chlorobenzenes Promoted by an Osmium Pyridyl Complex. Organometallics, 2014, 33, 1851-1858.	2.3	13
367	Conceptual Extension of the Degradation–Transformation of N-Heterocyclic Carbenes: Unusual Rearrangements on Osmium. Organometallics, 2018, 37, 3412-3424.	2.3	13
368	Trapping of a 12-Valence-Electron Osmium Intermediate. Organometallics, 2009, 28, 4606-4609.	2.3	12
369	Formation of Osmium-Allylphosphinomethanide Complexes by Coupling of an Isopropenyldiisopropylphosphine and Monosubstituted Allenes. Organometallics, 2012, 31, 440-444.	2.3	12
370	Insertion of Unsaturated C–C Bonds into the O–H Bond of an Iridium(III)-Hydroxo Complex: Formation of Phosphorescent Emitters with an Asymmetrical β-Diketonate Ligand. Inorganic Chemistry, 2020, 59, 15877-15887.	4.0	12
371	Reactions of IrXL2(PR3)(X = Cl, OTf; L2= TFB, 2CO) with HSnR3(R = Ph, nBu). Journal of Organometallic Chemistry, 1997, 534, 95-103.	1.8	11
372	Osmium-Centered Oxetylidene: Formation and Cleavage. Organometallics, 2012, 31, 8079-8081.	2.3	11
373	Synthesis, X-ray Structure, and Catalytic Activity of the Unusual Complex [Ir(TFB)(PiPr3)2]BF4(TFB =) Tj ETQq1 I	0,784314	l rgBT /Overld
374	Stabilization of a Chelate Tautomer of Phenylacetylide. Organometallics, 2003, 22, 1787-1789.	2.3	10
375	Preparation, X-ray Structures, and NMR Spectra of Elongated Dihydrogen Complexes with Four- and Five-Coordinate Tin Centers. Organometallics, 2006, 25, 4691-4694.	2.3	10
376	Ruthenium Hydroxycarbenes as Key Intermediates in Cycloisomerization and Decarbonylative Cyclization of Terminal Alkynals. Organometallics, 2014, 33, 3474-3480.	2.3	10
377	Synthesis and characterization of (PPr3i)2(CO)HRu(μ-H)- (μ-OMe)Ir(cod): an unusual example of a heterometallic complex containing a mixed hydrido–alkoxide bridge. New Journal of Chemistry, 1999, 23, 403-406.	2.8	9
378	Preparation of Capped Octahedral OsHC ₆ Complexes by Sequential Carbon-Directed C–H Bond Activation Reactions. Organometallics, 2016, 35, 2532-2542.	2.3	9

#	Article	IF	CITATIONS
379	A General Rhodium Catalyst for the Deuteration of Boranes and Hydrides of the Group 14 Elements. Journal of Organic Chemistry, 2020, 85, 15693-15698.	3.2	9
380	Hydration of Aliphatic Nitriles Catalyzed by an Osmium Polyhydride: Evidence for an Alternative Mechanism. Inorganic Chemistry, 2021, 60, 7284-7296.	4.0	9
381	Dissimilarity in the Chemical Behavior of Osmaoxazolium Salts and Osmaoxazoles: Two Different Aromatic Metalladiheterocycles. Organometallics, 2021, 40, 4150-4162.	2.3	9
382	Synthesis and catalytic activity of some cationic rhodium(I) complexes with substituted quinolines. Transition Metal Chemistry, 1982, 7, 242-245.	1.4	8
383	Synthesis and reactions of phenylacetylide iridium(I) and rhodium(I) complexes. Journal of Organometallic Chemistry, 1990, 381, 275-279.	1.8	8
384	Tuning the Nature and Formation of Bis(dihydrogen)–Osmium Species. Organometallics, 2018, 37, 367-379.	2.3	8
385	Electronic Communication in Binuclear Osmium- and Iridium-Polyhydrides. Inorganic Chemistry, 2021, 60, 2783-2796.	4.0	8
386	<i>Pseudo</i> -Tris(heteroleptic) Red Phosphorescent Iridium(III) Complexes Bearing a Dianionic <i>C</i> , <i>N</i> , <i>C</i> , a C) a €², a C) a €². Tetradentate Ligand. Inorganic Chemistry, 2021, 60, 11347-11363.	4.0	8
387	The Mechanisms of Homogeneous Hydrogenation. Catalysis By Metal Complexes, 1994, , 5-85.	0.6	8
388	Kinetic and spectroscopic study of the hydrogen-transfer reaction from 2-propanol to cyclohexanone catalyzed by [IrH2(pz)(Hpz)(PPh3)2] (Hpzî—»pyrazole). Journal of Molecular Catalysis, 1994, 87, 151-160.	1.2	7
389	Dihydride versus Elongated Dihydrogen in [H2Os(κ2-O2CCH3)L(PiPr3)2]+ Complexes:  Influence of the L Ligand. Organometallics, 2002, 21, 1311-1314.	2.3	7
390	Deacylative Alkylation vs. Photoredox Catalysis in the Synthesis of 3,3'â€Bioxindoles. European Journal of Organic Chemistry, 2020, 2020, 3101-3109.	2.4	7
391	Preparation and Degradation of Rhodium and Iridium Diolefin Catalysts for the Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols. Organometallics, 2021, 40, 989-1003.	2.3	7
392	Alkynyl Ligands as Building Blocks for the Preparation of Phosphorescent Iridium(III) Emitters: Alternative Synthetic Precursors and Procedures. Inorganic Chemistry, 2022, 61, 9019-9033.	4.0	7
393	The synthesis and structure determination of a novel η6-arenerhodium(III) complex, [(Me2SiC6H5)4Rh2H2], and the synthesis of [(Me2SiC6H5)4Ir2H2]. Journal of Organometallic Chemistry, 1987, 330, 179-184.	1.8	6
394	Reductive elimination of the alkenyl fragment and a phosphine ligand from [Rh(acac)?(E)-CH=CHR?(PCy3)2]BF4 (R=Cy, Ph, H): preparation of [(E)-RHC=CHPCy3]BF4 from alkynes. Journal of Organometallic Chemistry, 1999, 577, 265-270.	1.8	6
395	Sigma-bond activation reactions induced by unsaturated Os(IV)-hydride complexes. Advances in Organometallic Chemistry, 2020, 74, 53-104.	1.0	6
396	Reactions of POP-pincer rhodium(I)-aryl complexes with small molecules: coordination flexibility of the ether diphosphine. Canadian Journal of Chemistry, 2021, 99, 127-136.	1.1	6

#	Article	IF	CITATIONS
397	Bromination and C–C Cross-Coupling Reactions for the C–H Functionalization of Iridium(III) Emitters. Organometallics, 2021, 40, 3211-3222.	2.3	6
398	Assembly of a Dihydrideborate and Two Aryl Nitriles to Form a C,N,N′-Pincer Ligand Coordinated to Osmium. Organometallics, 2021, 40, 635-642.	2.3	4
399	Homogeneous Transfer Hydrogenation Catalysed by Metal Complexes. Catalysis By Metal Complexes, 1994, , 87-118.	0.6	4
400	C–Cl Oxidative Addition and C–C Reductive Elimination Reactions in the Context of the Rhodium-Promoted Direct Arylation. Organometallics, 2022, 41, 716-732.	2.3	4
401	Metathesis between Eâ^'C(sp ^{<i>n</i>}) and Hâ^'C(sp ³) σâ€Bonds (E=Si, Ge; <i>n</i> =2	,) ₁ 3.8TQq;	1 ₄ 10.78433
402	Alkenyl-Assisted C ³ –C Bond Activation of Acetylacetonate Coordinated to Iridium. Organometallics, 2017, 36, 4344-4347.	2.3	3
403	Osmium Complexes With POP Pincer Ligands. , 2018, , 341-357.		2
404	Azolium Control of the Osmium-Promoted Aromatic C–H Bond Activation in 1,3-Disubstituted Substrates. Organometallics, 2021, 40, 3979-3991.	2.3	2
405	Silyl-Osmium(IV)-Trihydride Complexes Stabilized by a Pincer Ether-Diphosphine: Formation and Reactions with Alkynes. Organometallics, 2022, 41, 2022-2034.	2.3	2
406	Supported Metal Complexes. Catalysis By Metal Complexes, 1994, , 241-253.	0.6	1
407	C—C Coupling and C—H Bond Activation Reactions of Cyclopentadienyl—Osmium Compounds: The Rich and Varied Chemistry of Os(η5-C5H5)Cl (PiPr3)2 and Its Major Derivatives. ChemInform, 2005, 36, no.	0.0	0
408	Metathesis between Eâ^'C(spn) and Hâ^'C(sp3) σâ€Bonds (E = Si, Ge; n = 2, 3) on an Osmiumâ€Polyhydride. Angewandte Chemie, 0, , .	2.0	0