Franko Greiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4707229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth and treatment of hydrogenated amorphous carbon nanoparticles in a lowâ€pressure plasma. Plasma Processes and Polymers, 2022, 19, .	3.0	3
2	A minimally invasive electrostatic particle extractor for nanodusty plasmas and its application for the verification of in situ Mie polarimetry. Plasma Sources Science and Technology, 2021, 30, 035011.	3.1	9
3	Spatio-temporally resolved investigations of layered particle growth in a reactive argon-acetylene plasma. Plasma Sources Science and Technology, 2019, 28, 115016.	3.1	18
4	High-precision <i>in-situ</i> size measurements of single microparticles in an RF plasma. Physics of Plasmas, 2019, 26, .	1.9	16
5	Probing a dusty magnetized plasma with self-excited dust-density waves. Physical Review E, 2018, 97, 033203.	2.1	27
6	Dynamic ion shadows behind finite-sized objects in collisionless magnetized plasma flows. New Journal of Physics, 2018, 20, 073027.	2.9	18
7	Charging of an irregularly shaped particle in the sheath of an rf plasma. Physics of Plasmas, 2018, 25, 073702.	1.9	6
8	Experiments on wake structures behind a microparticle in a magnetized plasma flow. Physics of Plasmas, 2018, 25, .	1.9	14
9	Diagnostics and characterization of nanodust and nanodusty plasmas. European Physical Journal D, 2018, 72, 1.	1.3	32
10	Non-Maxwellian and magnetic field effects in complex plasma wakes. European Physical Journal D, 2018, 72, 1.	1.3	27
11	Molecular dynamics simulations of wake structures behind a microparticle in a magnetized ion flow. I. Collisionless limit with cold ion beam. Physics of Plasmas, 2018, 25, .	1.9	15
12	Molecular dynamics simulations of wake structures behind a microparticle in a magnetized ion flow. II. Effects of velocity spread and ion collisions. Physics of Plasmas, 2018, 25, .	1.9	14
13	<i>In-situ</i> analysis of optically thick nanoparticle clouds. Applied Physics Letters, 2017, 110, .	3.3	12
14	On the amplitude of dust-density waves in inhomogeneous dusty plasmas. Physics of Plasmas, 2017, 24, 033704.	1.9	20
15	Diagnostics of void expansion during cyclic growth and formation of layered nanoparticle clouds. Journal of Applied Physics, 2017, 121, 113302.	2.5	11
16	Size and density evolution of a single microparticle embedded in a plasma. Physics of Plasmas, 2017, 24, .	1.9	22
17	Resonance methods for the characterization of dust particles in plasmas. Journal of Plasma Physics, 2016, 82, .	2.1	15
18	Long-term spatio-temporal evolution of the dust distribution in dusty argon rf plasmas. Plasma Sources Science and Technology, 2016, 25, 055004.	3.1	16

FRANKO GREINER

#	Article	IF	CITATIONS
19	Self-excited dust-acoustic waves in an electron-depleted nanodusty plasma. Physics of Plasmas, 2015, 22, .	1.9	53
20	Exploring the wake of a dust particle by a continuously approaching test grain. Physics of Plasmas, 2015, 22, 053702.	1.9	41
21	Kinetic Mie ellipsometry to determine the time-resolved particle growth in nanodusty plasmas. Journal Physics D: Applied Physics, 2015, 48, 465203.	2.8	34
22	Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel-plate reactor. Physics of Plasmas, 2014, 21, .	1.9	29
23	Sheared and unsheared rotation of driven dust clusters. Physics of Plasmas, 2014, 21, .	1.9	7
24	Probing the Plasma Sheath by the Continuous Mass Loss of Microparticles. IEEE Transactions on Plasma Science, 2013, 41, 764-768.	1.3	20
25	Trapping of nanodust clouds in a magnetized plasma. AIP Conference Proceedings, 2013, , .	0.4	3
26	Ion-Wake-Mediated Particle Interaction in a Magnetized-Plasma Flow. Physical Review Letters, 2012, 109, 135001.	7.8	43
27	Magnetizing a Complex Plasma without a Magnetic Field. Physical Review Letters, 2012, 109, 155003.	7.8	56
28	Experiments and Simulations of Particle Flows in a Magnetized Dust Torus. Contributions To Plasma Physics, 2012, 52, 813-818.	1.1	23
29	Wake Formation and Wake Field Effects in Complex Plasmas. Contributions To Plasma Physics, 2012, 52, 804-812.	1.1	52
30	Charging and coupling of a vertically aligned particle pair in the plasma sheath. Physics of Plasmas, 2012, 19, .	1.9	47
31	Imaging Mie ellipsometry: dynamics of nanodust clouds in an argon–acetylene plasma. Plasma Sources Science and Technology, 2012, 21, 065005.	3.1	57
32	Influence of Negative Ions on Drift Waves in a Lowâ€Density Ar/O ₂ â€Plasma. Contributions To Plasma Physics, 2011, 51, 769-784.	1.1	14
33	Nanodust in Magnetized Plasma. , 2011, , .		1
34	Dust trajectories as high precision diagnostic. AIP Conference Proceedings, 2011, , .	0.4	0
35	Effects of charge depletion in dusty plasmas. Physics of Plasmas, 2011, 18, 013703.	1.9	37
36	Mass changes of microparticles in a plasma observed by a phase-resolved resonance method. Physics of Plasmas, 2011, 18, .	1.9	55

FRANKO GREINER

#	Article	IF	CITATIONS
37	Linear study of the nonmodal growth of drift waves in dusty plasmas. Physics of Plasmas, 2010, 17, 063703.	1.9	3
38	Effect of Centrifugal Forces on the Interparticle Distance of Two Dust Particles Confined in a Plasma. IEEE Transactions on Plasma Science, 2010, 38, 788-791.	1.3	5
39	Determination of dust grain charge and screening lengths in the plasma sheath by means of a controlled cluster rotation. Physics of Plasmas, 2010, 17, 083703.	1.9	27
40	Generation of Intermittent Turbulent Events at the Transition from Closed to Open Field Lines in a Toroidal Plasma. Physical Review Letters, 2009, 102, 255001.	7.8	38
41	Effect of neutral gas motion on the rotation of dust clusters in an axial magnetic field. Physics of Plasmas, 2009, 16, .	1.9	74
42	Dynamics of 2D Dust Clusters with a Perpendicular Magnetic Field. AIP Conference Proceedings, 2008, ,	0.4	0
43	Torus-Shaped Dust Clouds in Magnetized Anodic Plasmas. AIP Conference Proceedings, 2008, , .	0.4	1
44	Observation of large-scale coherent structures under strongE×Bshear in the torsatron TJ-K. Plasma Physics and Controlled Fusion, 2007, 49, 777-789.	2.1	23
45	Investigation of the parallel dynamics of drift-wave turbulence in toroidal plasmas. Plasma Physics and Controlled Fusion, 2007, 49, 1005-1017.	2.1	225
46	Improved conditional averaging technique for plasma fluctuation diagnostics. Plasma Physics and Controlled Fusion, 2007, 49, 485-497.	2.1	12
47	Prospects and limitations of conditional averaging. Physica Scripta, 2006, T122, 25-33.	2.5	19
48	Comparison of Langmuir and emissive probes as diagnostics for turbulence studies in the low-temperature plasma of the torsatron TJ-K. Plasma Physics and Controlled Fusion, 2005, 47, 569-579.	2.1	70
49	Ï <mark>s</mark> scaling of characteristic turbulent structures in the torsatron TJ-K. Physics of Plasmas, 2005, 12, 032504.	1.9	47
50	Study of edge turbulence in dimensionally similar laboratory plasmas. Physics of Plasmas, 2004, 11, 2558-2564.	1.9	273
51	Observation of Mode like Coherent Structures in Curved Magnetic Fields of a Simple Magnetized Torus. Contributions To Plasma Physics, 2004, 44, 335-346.	1.1	20
52	Comparison of Emissive and Plugged Probes DC Plasma Potential Measurements in a Magnetised Plasma. AIP Conference Proceedings, 2003, , .	0.4	2
53	Comparative experimental study of large-scale fluctuations in a toroidally magnetized low-β plasma. AIP Conference Proceedings, 2002, , .	0.4	2
54	Comparative experimental study of coherent structures in a simple magnetized torus. Plasma Physics and Controlled Fusion, 2001, 43, 525-542.	2.1	37

FRANKO GREINER

#	Article	IF	CITATIONS
55	Chaos control and taming of turbulence in plasma devices. Physics of Plasmas, 2001, 8, 1961-1968.	1.9	56
56	Chaos and Chaos Control in Plasmas. Physica Scripta, 2000, T84, 128.	2.5	4
57	Controlling chaos in the Pierce diode. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239, 103-108.	2.1	15
58	The Pierce diode as a model for the stability of thermionic gas discharges. Journal Physics D: Applied Physics, 1997, 30, 2979-2990.	2.8	6
59	van der Pol behavior of relaxation oscillations in a periodically driven thermionic discharge. Physical Review E, 1995, 52, 4316-4327.	2.1	52
60	Nonlinear dynamical behavior of thermionic low pressure discharges. II. Experimental. Physics of Plasmas, 1995, 2, 1822-1836.	1.9	69
61	Nonlinear dynamical behavior of thermionic low pressure discharges. I. Simulation. Physics of Plasmas, 1995, 2, 1810-1821.	1.9	43
62	Nonlinear Dynamics and Chaos in Gas Discharge Systems. European Physical Journal Special Topics, 1995, 05, C6-131-C6-136.	0.2	4
63	Stable and unstable discharge modes of a multipole confined thermionic gas discharge at low pressure. Plasma Sources Science and Technology, 1994, 3, 134-141.	3.1	17
64	Chaos in Plasmas: A Case Study in Thermionic Discharges. , 1994, , 501-521.		1
65	Experiments and particle-in-cell simulation on self-oscillations and period doubling in thermionic discharges at low pressure. Physical Review Letters, 1993, 70, 3071-3074.	7.8	57
66	A multi-parameter chi-square fitting procedure and applications in spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 1989, 41, 69-78.	2.3	16
67	Radiative transfer simulations for in-situ particle size diagnostic in reactive, particle growing plasmas. Journal Physics D: Applied Physics, O, , .	2.8	4