
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4707002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chinese Journal of Chemical Engineering, 2021, 32, 281-290.	1.7	206
2	Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. Journal of Taibah University for Science, 2020, 14, 305-313.	1.1	177
3	Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. Journal of Cleaner Production, 2019, 232, 43-56.	4.6	162
4	Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 2020, 18, 100422.	1.5	157
5	New magnetic Schiff's base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. International Journal of Biological Macromolecules, 2020, 146, 530-539.	3.6	155
6	Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: Methyl orange adsorption and mechanism studies. International Journal of Biological Macromolecules, 2019, 129, 98-109.	3.6	150
7	Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. International Journal of Biological Macromolecules, 2020, 163, 756-765.	3.6	148
8	Parametric optimization by Box–Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. Journal of Environmental Chemical Engineering, 2021, 9, 105166.	3.3	144
9	Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surfaces and Interfaces, 2019, 16, 76-84.	1.5	142
10	Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. Journal of Environmental Chemical Engineering, 2021, 9, 105530.	3.3	130
11	Tunable Schiff's base-cross-linked chitosan composite for the removal of reactive red 120 dye: Adsorption and mechanism study. International Journal of Biological Macromolecules, 2020, 142, 732-741.	3.6	127
12	Kinetics of photocatalytic decolourization of cationic dye using porous TiO ₂ film. Journal of Taibah University for Science, 2016, 10, 352-362.	1.1	120
13	Synthesis of Magnetic Chitosan-Fly Ash/Fe3O4 Composite for Adsorption of Reactive Orange 16 Dye: Optimization by Box–Behnken Design. Journal of Polymers and the Environment, 2020, 28, 1068-1082.	2.4	118
14	Adsorption of methylene blue onto activated carbon developed from biomass waste by H ₂ SO ₄ activation: kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment, 2016, 57, 25194-25206.	1.0	117
15	Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. International Journal of Biological Macromolecules, 2021, 189, 464-476.	3.6	117
16	Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecology and Environment, 2020, 5, 456-469.	1.9	116
17	Hybrid Crosslinked Chitosan-Epichlorohydrin/TiO2 Nanocomposite for Reactive Red 120 Dye Adsorption: Kinetic, Isotherm, Thermodynamic, and Mechanism Study. Journal of Polymers and the Environment, 2020, 28, 624-637.	2.4	115
18	Magnetic Chitosan-Glutaraldehyde/Zinc Oxide/Fe3O4 Nanocomposite: Optimization and Adsorptive Mechanism of Remazol Brilliant Blue R Dye Removal. Journal of Polymers and the Environment, 2021, 29, 3932-3947.	2.4	111

#	Article	IF	CITATIONS
19	Synthesis of chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles for adsorption of reactive orange 16 dye using a response surface methodology approach. Bioresource Technology, 2019, 293, 122071.	4.8	105
20	Biofilm of cross-linked Chitosan-Ethylene Glycol Diglycidyl Ether for removal of Reactive Red 120 and Methyl Orange: Adsorption and mechanism studies. Journal of Environmental Chemical Engineering, 2019, 7, 102965.	3.3	103
21	Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue R dye: Optimization by using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125329.	2.3	102
22	Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. International Journal of Biological Macromolecules, 2020, 164, 4218-4230.	3.6	102
23	Adsorption of Reactive Red 4 by immobilized chitosan on glass plates: Towards the design of immobilized TiO2–chitosan synergistic photocatalyst-adsorption bilayer system. Biochemical Engineering Journal, 2010, 49, 317-325.	1.8	101
24	Tuning of Fly Ash Loading into Chitosan-Ethylene Glycol Diglycidyl Ether Composite for Enhanced Removal of Reactive Red 120 Dye: Optimization Using the Box–Behnken Design. Journal of Polymers and the Environment, 2020, 28, 2720-2733.	2.4	93
25	Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (<i>Musa) Tj ETQq1 1 0.784</i>	1314 rgBT 1.1	Oyerlock 10
26	Mesoporous Crosslinked Chitosan-Activated Charcoal Composite for the Removal of Thionine Cationic Dye: Comprehensive Adsorption and Mechanism Study. Journal of Polymers and the Environment, 2020, 28, 1095-1105.	2.4	86
27	Microwave-assisted preparation of mesoporous-activated carbon from coconut (<i>Cocos) Tj ETQq1 1 0.784314 Chemical Engineering Communications, 2017, 204, 1143-1156.</i>	ł rgBT /Ov 1.5	erlock 10 Tf 85
28	Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: Statistical optimization and mechanism study. International Journal of Biological Macromolecules, 2020, 161, 503-513.	3.6	85
29	Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: Modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean Journal of Chemical Engineering, 2021, 38, 1499-1509.	1.2	83
30	Adsorption Characteristics and Mechanistic Study of Immobilized Chitosan-Montmorillonite Composite for Methyl Orange removal. Journal of Polymers and the Environment, 2020, 28, 1901-1913.	2.4	78
31	Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45watt compact fluorescent lamp. Desalination, 2011, 280, 288-296.	4.0	77
32	Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surfaces and Interfaces, 2020, 21, 100688.	1.5	77
33	Chitosan-glyoxal film as a superior adsorbent for two structurally different reactive and acid dyes: Adsorption and mechanism study. International Journal of Biological Macromolecules, 2019, 135, 569-581.	3.6	76
34	Oxidation of crosslinked chitosan-epichlorohydrine film and its application with TiO2 for phenol removal. Carbohydrate Polymers, 2012, 90, 87-94.	5.1	75
35	Cross-Linked Chitosan-Glyoxal/Kaolin Clay Composite: Parametric Optimization for Color Removal and COD Reduction of Remazol Brilliant Blue R Dye. Journal of Polymers and the Environment, 2022, 30, 164-178.	2.4	74
36	Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies. , 0, 109, 231-240.		74

#	Article	IF	CITATIONS
37	Conversion of Malaysian low-rank coal to mesoporous activated carbon: Structure characterization and adsorption properties. Chinese Journal of Chemical Engineering, 2019, 27, 1716-1727.	1.7	73
38	FeCl3-Activated Carbon Developed from Coconut Leaves: Characterization and Application for Methylene Blue Removal. Sains Malaysiana, 2018, 47, 603-610.	0.3	72
39	Modeling and mechanism of reactive orange 16 dye adsorption by chitosan-glyoxal/TiO2 nanocomposite: application of response surface methodology. , 0, 164, 346-360.		70
40	Production of the lactic acid from mango peel waste – Factorial experiment. Journal of King Saud University - Science, 2013, 25, 39-45.	1.6	68
41	Adsorption of methylene blue onto coconut (<i>Cocos nucifera</i>) leaf: optimization, isotherm and kinetic studies. Desalination and Water Treatment, 2016, 57, 8839-8853.	1.0	68
42	Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models. Environmental Pollution, 2021, 268, 115663.	3.7	67
43	Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. Water Science and Technology, 2021, 84, 1858-1872.	1.2	67
44	Utilization of watermelon (<i>Citrullus lanatus</i>) rinds as a natural low-cost biosorbent for adsorption of methylene blue: kinetic, equilibrium and thermodynamic studies. Journal of Taibah University for Science, 2018, 12, 371-381.	1.1	66
45	Fabrication of Schiff's Base Chitosan-Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology. Journal of Polymers and the Environment, 2021, 29, 2855-2868.	2.4	65
46	KOH-activated carbon developed from biomass waste: adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake. Desalination and Water Treatment, 2016, 57, 27226-27236.	1.0	64
47	Immobilized Fe-Loaded Chitosan Film for Methyl Orange Dye Removal: Competitive Ions, Reusability, and Mechanism. Journal of Polymers and the Environment, 2021, 29, 1050-1062.	2.4	64
48	Photocatalytic decolorization of methylene blue by an immobilized TiO ₂ film under visible light irradiation: optimization using response surface methodology (RSM). Desalination and Water Treatment, 2015, 56, 161-172.	1.0	62
49	H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: Optimization of adsorption and mechanism study. Surfaces and Interfaces, 2020, 21, 100641.	1.5	60
50	Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive orange 16. International Journal of Biological Macromolecules, 2017, 95, 743-749.	3.6	59
51	Response surface methodology approach for optimization of color removal and COD reduction of methylene blue using microwave-induced NaOH activated carbon from biomass waste. , 0, 62, 208-220.		59
52	Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Development of hybrid tree-based artificial intelligence models. Marine Pollution Bulletin, 2021, 170, 112639.	2.3	58
53	Synthesis of Schiff's base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: Modeling and mechanism study. Sustainable Chemistry and Pharmacy, 2021, 20, 100379.	1.6	56
54	Upgrading low rank coal into mesoporous activated carbon via microwave process for methylene blue dye adsorption: Box Behnken Design and mechanism study. Diamond and Related Materials, 2022, 127, 109199.	1.8	54

#	Article	IF	CITATIONS
55	Mesoporous activated carbon from grass waste <i>via</i> H ₃ PO ₄ -activation for methylene blue dye removal: modelling, optimisation, and mechanism study. International Journal of Environmental Analytical Chemistry, 2022, 102, 6061-6077.	1.8	53
56	High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue. , 0, 74, 326-335.		53
57	Process Optimization and Adsorptive Mechanism for Reactive Blue 19 Dye by Magnetic Crosslinked Chitosan/MgO/Fe3O4 Biocomposite. Journal of Polymers and the Environment, 2022, 30, 2759-2773.	2.4	52
58	Photocatalytic-oxidation of solid state chitosan by immobilized bilayer assembly of TiO2–chitosan under a compact household fluorescent lamp irradiation. Carbohydrate Polymers, 2011, 83, 1146-1152.	5.1	50
59	Characterizations of the Photocatalytically-Oxidized Cross-Linked Chitosan-Glutaraldehyde and its Application as a Sub-Layer in the TiO2/CS-GLA Bilayer Photocatalyst System. Journal of Polymers and the Environment, 2012, 20, 817-829.	2.4	50
60	Synthesis of biohybrid magnetic chitosan-polyvinyl alcohol/MgO nanocomposite blend for remazol brilliant blue R dye adsorption: solo and collective parametric optimization. Polymer Bulletin, 2023, 80, 4927-4947.	1.7	49
61	Pyrolysis of rubber seed pericarp biomass treated with sulfuric acid for the adsorption of crystal violet and methylene green dyes: an optimized process. International Journal of Phytoremediation, 2023, 25, 393-402.	1.7	45
62	Adsorptive performance of carbon modified chitosan biopolymer for cationic dye removal: kinetic, isotherm, thermodynamic, and mechanism study. International Journal of Environmental Analytical Chemistry, 2022, 102, 6189-6203.	1.8	44
63	Equilibrium isotherms, kinetics, and thermodynamics studies of methylene blue adsorption on pomegranate (Punica granatum) peels as a natural low-cost biosorbent. , 0, 105, 322-331.		44
64	Magnetic biohybrid chitosan-ethylene glycol diglycidyl ether/magnesium oxide/Fe3O4 nanocomposite for textile dye removal: Box–Behnken design optimization and mechanism study. Journal of Polymer Research, 2022, 29, .	1.2	44
65	Equilibrium, kinetic and thermodynamic studies of Reactive Red 120 dye adsorption by chitosan beads from aqueous solution. Energy, Ecology and Environment, 2017, 2, 85-93.	1.9	41
66	Carbonization of corn (Zea mays) cob food residue by one-step activation with sulfuric acid for methylene blue adsorption. , 0, 118, 342-351.		39
67	N-doped TiO2 Synthesised via Microwave Induced Photocatalytic on RR4 dye Removal under LED Light Irradiation. Sains Malaysiana, 2017, 46, 1309-1316.	0.3	38
68	Adsorption of methylene blue onto acid-treated mango peels: Kinetic, equilibrium and thermodynamic study. , 0, 59, 210-219.		37
69	Fabrication, optimization and application of an immobilized layer-by-layer TiO2/Chitosan system for the removal of phenol and its intermediates under 45-W fluorescent lamp. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 49-65.	0.8	32
70	Large surface area activated carbon from low-rank coal via microwave-assisted KOH activation for methylene blue adsorption. , 0, 110, 239-249.		32
71	Adsorption behavior of methylene blue on acid-treated rubber (Hevea brasiliensis) leaf. , 0, 124, 297-307.		30
72	Magnetic crosslinked chitosan-tripolyphosphate/MgO/Fe3O4 nanocomposite for reactive blue 19 dye removal: Optimization using desirability function approach. Surfaces and Interfaces, 2022, 28, 101698.	1.5	30

#	Article	IF	CITATIONS
73	Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process. Water Science and Technology, 2020, 82, 1932-1949.	1.2	28
74	Pomegranate peels collected from fresh juice shop as a renewable precursor for high surface area activated carbon with potential application for methylene blue adsorption. , 0, 124, 287-296.		24
75	Multivariable optimization with desirability function for carbon porosity and methylene blue adsorption by watermelon rind activated carbon prepared by microwave assisted H3PO4. Biomass Conversion and Biorefinery, 2024, 14, 577-591.	2.9	21
76	Microwave Enhanced Synthesis of Sulfonated Chitosan-Montmorillonite for Effective Removal of Methylene Blue. Journal of Polymers and the Environment, 2021, 29, 4027-4039.	2.4	20
77	Optical properties of PVC composite modified during light exposure to give high absorption enhancement. Journal of Non-Crystalline Solids, 2021, 570, 120946.	1.5	18
78	The assessment of emerging data-intelligence technologies for modeling Mg+2 and SO4â^2 surface water quality. Journal of Environmental Management, 2021, 300, 113774.	3.8	18
79	Adsorption and mechanism study for reactive red 120 dye removal by cross-linked chitosan-epichlorohydrin biobeads. , 0, 164, 378-387.		18
80	Sustainable approach of batch and continuous biosorptive systems for praseodymium and thulium ions removal in mono and binary aqueous solutions. Environmental Technology and Innovation, 2021, 23, 101581.	3.0	17
81	Hydrothermal synthesis of phosphorylated chitosan and its adsorption performance towards Acid Red 88 dye. International Journal of Biological Macromolecules, 2021, 193, 1716-1726.	3.6	17
82	Oxidation of Chitosan in Solution by Photocatalysis and Product Characterization. Journal of Polymers and the Environment, 2017, 25, 828-835.	2.4	16
83	A Surface Morphological Study, Poly(Vinyl Chloride) Photo-Stabilizers Utilizing Ibuprofen Tin Complexes against Ultraviolet Radiation. Surfaces, 2020, 3, 579-593.	1.0	16
84	New stabilizers for PVC based on some diorganotin(IV) complexes with benzamidoleucine. Arabian Journal of Chemistry, 2016, 9, S1394-S1401.	2.3	15
85	Integrative artificial intelligence models for Australian coastal sediment lead prediction: An investigation of in-situ measurements and meteorological parameters effects. Journal of Environmental Management, 2022, 309, 114711.	3.8	15
86	Carbonization of rubber (Hevea brasiliensis) seed shell by one-step liquid phase activation with H2SO4 for methylene blue adsorption. , 0, 129, 279-288.		14
87	Sulfamethoxazole as a ligand to synthesize di- and tri-alkyltin(IV) complexes and using as excellent photo-stabilizers for PVC. Journal of Polymer Research, 2021, 28, 1.	1.2	13
88	New TiO _{2} /DSAT Immobilization System for Photodegradation of Anionic and Cationic Dyes. International Journal of Photoenergy, 2015, 2015, 1-6.	1.4	10
89	Box–Behnken Design for Optimizing Synthesis and Adsorption Conditions of Covalently Crosslinked Chitosan/Coal Fly Ash Composite for Reactive Red 120 Dye Removal. Journal of Polymers and the Environment, 2022, 30, 3447-3462.	2.4	10
90	Kinetics Studies of Metallic Ions Adsorption by Immobilised Chitosan. Science Letters, 2022, 16, 137.	0.5	6

#	ARTICLE	IF	CITATIONS
91	New organic PVC photo-stabilizers derived from synthesised novel coumarine moieties. Materials Science for Energy Technologies, 2022, 5, 278-293.	1.0	6
92	Carbon Nitrogen Co-Doped P25: Parameter Study on Photodegradation of Reactive Red 4. MATEC Web of Conferences, 2016, 47, 05018.	0.1	5
93	Enhanced photocatalytic degradation of phenol by immobilized TiO2/dye loaded chitosan. , 0, 167, 190-199.		5
94	Sulfur Dioxide Gas Adsorption Study using Mixed Activated Carbon from Different Biomass. International Journal of Technology, 2018, 9, 1121.	0.4	4
95	Preparation and Characterization of Single and Mixed Activated Carbons Derived from Coconut Shell and Palm Kernel Shell through Chemical Activation Using Microwave Irradiation System. Materials Science Forum, 0, 889, 215-220.	0.3	3
96	In-situ Transesterification of Jatropha curcas L. Seeds for Biodiesel Production using Supercritical Methanol. MATEC Web of Conferences, 2017, 97, 01082.	0.1	3
97	Optimization of Sorption Parameters for Color Removal of Textile Dye by Cross-linked Chitosan Beads Using Box-Behnken Design. MATEC Web of Conferences, 2016, 47, 05009.	0.1	2
98	Callus Induction of Fenugreek Trigonella Foenum-Graecum via Auxin Combined with Cytokinins Hormones, and Assessment of Toxicity via Brine Shrimp Assay. Journal of Asian Scientific Research, 2022, 12, 12-27.	0.0	2
99	Coal liquefaction using a tetralin-glycerol co-solvent system: effect of temperature and reaction time on conversion and product yield. WIT Transactions on Ecology and the Environment, 2014, , .	0.0	1
100	Thermal and Hydraulic Performances of Carbon and Metallic Oxides-Based Nanomaterials. Nanomaterials, 2022, 12, 1545.	1.9	1
101	Characteristics and Thermal Behaviour of Low Rank Malaysian Coals towards Liquefaction Performance via Thermogravimetric Analysis. IOP Conference Series: Materials Science and Engineering, 2016, 136, 012089.	0.3	0
102	Development of atenolol-tin complexes as PVC photostabilizers for outdoor applications. Journal of Physics: Conference Series, 2021, 1999, 012005.	0.3	0
103	Overview of Thaumatococcus Daniellii Plant, History, Uses, Benefits, and Characterization. Journal of Asian Scientific Research, 2022, 12, 80-90.	0.0	0
104	The Influence of Different Concentrations of Plant Hormones in Vitro on Seeds Germination of Fenugreek (Trigonella Foenum-Graecum). Journal of Asian Scientific Research, 2022, 12, 104-113.	0.0	0