List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4706312/publications.pdf Version: 2024-02-01

LUIÃS REATONS

#	Article	IF	CITATIONS
1	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
2	Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 2011, 14, 101-112.	6.4	1,279
3	Model-based uncertainty in species range prediction. Journal of Biogeography, 2006, 33, 1704-1711.	3.0	804
4	Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 2004, 27, 437-448.	4.5	665
5	Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2012, 2, 121-124.	18.8	594
6	Effects of restricting environmental range of data to project current and future species distributions. Ecography, 2004, 27, 165-172.	4.5	479
7	The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions, 2007, 13, 243-251.	4.1	325
8	Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16442-16447.	7.1	312
9	TEASIng apart alien species risk assessments: a framework for best practices. Ecology Letters, 2012, 15, 1475-1493.	6.4	241
10	Fire and biodiversity in the Anthropocene. Science, 2020, 370, .	12.6	240
11	Using species combinations in indicator value analyses. Methods in Ecology and Evolution, 2012, 3, 973-982.	5.2	224
12	Uncertainty in predictions of extinction risk. Nature, 2004, 430, 34-34.	27.8	216
13	Consistent response of bird populations to climate change on two continents. Science, 2016, 352, 84-87.	12.6	212
14	Biodiversity scenarios neglect future landâ€use changes. Global Change Biology, 2016, 22, 2505-2515.	9.5	201
15	From Management to Stewardship: Viewing Forests As Complex Adaptive Systems in an Uncertain World. Conservation Letters, 2015, 8, 368-377.	5.7	183
16	Prominent role of invasive species in avian biodiversity loss. Biological Conservation, 2009, 142, 2043-2049.	4.1	160
17	Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172242.	2.6	153
18	Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds?. Global Change Biology, 2005, 11, 12-21.	9.5	152

#	Article	IF	CITATIONS
19	How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes. PLoS ONE, 2013, 8, e62392.	2.5	151
20	Is land abandonment having an impact on biodiversity? A meta-analytical approach to bird distribution changes in the north-western Mediterranean. Biological Conservation, 2008, 141, 450-459.	4.1	146
21	Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biological Invasions, 2009, 11, 1017-1031.	2.4	144
22	Biodiversity policy beyond economic growth. Conservation Letters, 2020, 13, e12713.	5.7	141
23	Using fire to promote biodiversity. Science, 2017, 355, 1264-1265.	12.6	135
24	More and more generalists: two decades of changes in the European avifauna. Biology Letters, 2012, 8, 780-782.	2.3	134
25	Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Global Ecology and Biogeography, 2017, 26, 385-394.	5.8	134
26	Are Fragments Islands? Landscape Context and Densityâ€Area Relationships in Boreal Forest Birds. American Naturalist, 2003, 162, 343-357.	2.1	133
27	Fineâ€scale bird monitoring from light unmanned aircraft systems. Ibis, 2012, 154, 177-183.	1.9	133
28	Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective. Journal of Applied Ecology, 2016, 53, 1341-1350.	4.0	129
29	Effects of forest composition and structure on bird species richness in a Mediterranean context: Implications for forest ecosystem management. Forest Ecology and Management, 2007, 242, 470-476.	3.2	128
30	Landâ€use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the <scp>P</scp> yrenees. Global Ecology and Biogeography, 2016, 25, 263-273.	5.8	123
31	Climate Change or Land Use Dynamics: Do We Know What Climate Change Indicators Indicate?. PLoS ONE, 2011, 6, e18581.	2.5	121
32	Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here?. Global Ecology and Biogeography, 2015, 24, 25-43.	5.8	111
33	Colonization of dynamic Mediterranean landscapes: where do birds come from after fire?. Journal of Biogeography, 2005, 32, 789-798.	3.0	108
34	Patterns of beta diversity in Europe: the role of climate, land cover and distance across scales. Journal of Biogeography, 2012, 39, 1473-1486.	3.0	104
35	A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects. Global and Planetary Change, 2017, 148, 42-54.	3.5	103
36	Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biological Conservation, 2016, 199, 157-171.	4.1	101

LLUÃS BROTONS

#	Article	IF	CITATIONS
37	Effects of undergrowth clearing on the bird communities of the Northwestern Mediterranean Coppice Holm oak forests. Forest Ecology and Management, 2006, 221, 72-82.	3.2	96
38	Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change, 2021, 165, 1.	3.6	96
39	Modelling the effects of irrigation schemes on the distribution of steppe birds in Mediterranean farmland. Biodiversity and Conservation, 2004, 13, 1039-1058.	2.6	95
40	Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biological Conservation, 2016, 198, 193-201.	4.1	94
41	Tracking Progress Toward EU Biodiversity Strategy Targets: EU Policy Effects in Preserving its Common Farmland Birds. Conservation Letters, 2017, 10, 395-402.	5.7	94
42	Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Scientific Reports, 2017, 7, 41591.	3.3	91
43	Updating bird species distribution at large spatial scales: applications of habitat modelling to data from longâ€term monitoring programs. Diversity and Distributions, 2007, 13, 276-288.	4.1	86
44	Effect of adjacent agricultural habitat on the distribution of passerines in natural grasslands. Biological Conservation, 2005, 124, 407-414.	4.1	85
45	Assessing the location and stability of foraging hotspots for pelagic seabirds: An approach to identify marine Important Bird Areas (IBAs) in Spain. Biological Conservation, 2012, 156, 30-42.	4.1	82
46	Declining population trends of European mountain birds. Global Change Biology, 2019, 25, 577-588.	9.5	82
47	Integrating species distribution modelling into decision-making to inform conservation actions. Biodiversity and Conservation, 2017, 26, 251-271.	2.6	77
48	Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Global Change Biology, 2009, 15, 474-485.	9.5	73
49	Landâ€use changes as major drivers of mountain pine (<i>Pinus uncinata</i> Ram.) expansion in the Pyrenees. Global Ecology and Biogeography, 2010, 19, 632-641.	5.8	72
50	Designing a network of green infrastructure to enhance the conservation value of protected areas and maintain ecosystem services. Science of the Total Environment, 2019, 651, 541-550.	8.0	72
51	Bird assemblages in forest fragments within Mediterranean mosaics created by wild fires. Landscape Ecology, 2005, 19, 663-675.	4.2	71
52	A suite of essential biodiversity variables for detecting critical biodiversity change. Biological Reviews, 2018, 93, 55-71.	10.4	70
53	Global scenarios for biodiversity need to better integrate climate and land use change. Diversity and Distributions, 2017, 23, 1231-1234.	4.1	69
54	Rural abandoned landscapes and bird assemblages: winners and losers in the rewilding of a marginal mountain area (NW Spain). Regional Environmental Change, 2016, 16, 199-211.	2.9	68

#	Article	IF	CITATIONS
55	Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosystem Services, 2020, 45, 101174.	5.4	68
56	Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Science of the Total Environment, 2019, 657, 1602-1614.	8.0	67
57	Community responses to extreme climatic conditions. Environmental Epigenetics, 2011, 57, 406-413.	1.8	64
58	Predictive modelling of fire occurrences from different fire spread patterns in Mediterranean landscapes. International Journal of Wildland Fire, 2015, 24, 407.	2.4	64
59	Assessing impacts of land abandonment on Mediterranean biodiversity using indicators based on bird and butterfly monitoring data. Environmental Conservation, 2016, 43, 69-78.	1.3	62
60	The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships. Science of the Total Environment, 2018, 626, 1270-1283.	8.0	61
61	Functional homogenization of bird communities along habitat gradients: accounting for niche multidimensionality. Global Ecology and Biogeography, 2010, 19, 684-696.	5.8	59
62	Forest bird diversity in Mediterranean areas affected by wildfires: a multi-scale approach. Ecography, 2002, 25, 161-172.	4.5	57
63	Putting pyrodiversity to work for animal conservation. Conservation Biology, 2017, 31, 952-955.	4.7	56
64	Coupling a water balance model with forest inventory data to predict drought stress: the role of forest structural changes vs. climate changes. Agricultural and Forest Meteorology, 2015, 213, 77-90.	4.8	55
65	Identifying location and causality of fire ignition hotspots in a Mediterranean region. International Journal of Wildland Fire, 2012, 21, 905.	2.4	53
66	Synoptic weather conditions and changing fire regimes in a Mediterranean environment. Agricultural and Forest Meteorology, 2018, 253-254, 190-202.	4.8	53
67	Dangers of predicting bird species distributions in response to land over changes. Ecological Applications, 2009, 19, 538-549.	3.8	52
68	Bird community specialization, bird conservation and disturbance: the role of wildfires. Journal of Animal Ecology, 2011, 80, 128-136.	2.8	52
69	Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery. Drones, 2019, 3, 6.	4.9	52
70	Wildfires and the expansion of threatened farmland birds: the ortolan bunting <i>Emberiza hortulana</i> in Mediterranean landscapes. Journal of Applied Ecology, 2008, 45, 1059-1066.	4.0	50
71	How fire interacts with habitat loss and fragmentation. Biological Reviews, 2021, 96, 976-998.	10.4	50
72	EU's Conservation Efforts Need More Strategic Investment to Meet Continental Commitments. Conservation Letters, 2017, 10, 231-237.	5.7	49

LLUÃS BROTONS

#	Article	IF	CITATIONS
73	Does fire increase the spatial heterogeneity of bird communities in Mediterranean landscapes?. Ibis, 2003, 145, 307-317.	1.9	48
74	Vegetation and songbird response to land abandonment: from landscape to census plot. Diversity and Distributions, 2006, 13, 061117052025004-???.	4.1	48
75	History matters: Previous land use changes determine post-fire vegetation recovery in forested Mediterranean landscapes. Forest Ecology and Management, 2012, 279, 121-127.	3.2	47
76	Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests. PLoS ONE, 2014, 9, e94906.	2.5	47
77	Configurational crop heterogeneity increases withinâ€field plant diversity. Journal of Applied Ecology, 2020, 57, 654-663.	4.0	47
78	Home range size of willow tits: a response to winter habitat loss. Oecologia, 2003, 136, 635-642.	2.0	46
79	Global review on interactions between insect pests and other forest disturbances. Landscape Ecology, 2021, 36, 945-972.	4.2	46
80	Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Diversity and Distributions, 2016, 22, 83-96.	4.1	45
81	Mountain farmland protection and fire-smart management jointly reduce fire hazard and enhance biodiversity and carbon sequestration. Ecosystem Services, 2020, 44, 101143.	5.4	45
82	Rapid behavioural response of urban birds to COVID-19 lockdown. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202513.	2.6	45
83	Future impact of climate extremes in the Mediterranean: Soil erosion projections when fire and extreme rainfall meet. Land Degradation and Development, 2020, 31, 3040-3054.	3.9	44
84	Title is missing!. Landscape Ecology, 2003, 18, 377-393.	4.2	43
85	Reduced bird occurrence in pine forest fragments associated with road proximity in a Mediterranean agricultural area. Landscape and Urban Planning, 2001, 57, 77-89.	7.5	42
86	Assessing the response of open-habitat bird species to landscape changes in Mediterranean mosaics. Biodiversity and Conservation, 2008, 17, 103-119.	2.6	42
87	Assessing the distribution of forest ecosystem services in a highly populated Mediterranean region. Ecological Indicators, 2018, 93, 986-997.	6.3	41
88	Soil carbon stocks and their variability across the forests, shrublands and grasslands of peninsular Spain. Biogeosciences, 2013, 10, 8353-8361.	3.3	40
89	Indicators of the impact of land use changes using large-scale bird surveys: Land abandonment in a Mediterranean region. Ecological Indicators, 2014, 45, 235-244.	6.3	40
90	Biogeography of species richness gradients: linking adaptive traits, demography and diversification. Biological Reviews, 2012, 87, 457-479.	10.4	39

#	Article	IF	CITATIONS
91	Adapting prescribed burns to future climate change in Mediterranean landscapes. Science of the Total Environment, 2019, 677, 68-83.	8.0	39
92	From introduction to equilibrium: reconstructing the invasive pathways of the Argentine ant in a Mediterranean region. Global Change Biology, 2009, 15, 2101-2115.	9.5	38
93	Flexible dispersal strategies in native and nonâ€native ranges: environmental quality and the â€~good–stay, bad–disperse' rule. Ecography, 2012, 35, 1024-1032.	4.5	38
94	Compound fireâ€drought regimes promote ecosystem transitions in Mediterranean ecosystems. Journal of Ecology, 2019, 107, 1187-1198.	4.0	38
95	Designing a network of green infrastructure for the EU. Landscape and Urban Planning, 2020, 196, 103732.	7.5	38
96	Connectivity conservation priorities for individual patches evaluated in the present landscape: how durable and effective are they in the long term?. Ecography, 2015, 38, 782-791.	4.5	37
97	Assessing Pine Processionary Moth Defoliation Using Unmanned Aerial Systems. Forests, 2017, 8, 402.	2.1	37
98	The Potential of Agricultural Conversion to Shape Forest Fire Regimes in Mediterranean Landscapes. Ecosystems, 2020, 23, 34-51.	3.4	37
99	Geographical variability in propagule pressure and climatic suitability explain the European distribution of two highly invasive crayfish. Journal of Biogeography, 2013, 40, 548-558.	3.0	36
100	Cumulative effects of fire and drought in Mediterranean ecosystems. Ecosphere, 2017, 8, e01906.	2.2	35
101	Improving ecosystem assessments in Mediterranean social-ecological systems: a DPSIR analysis. Ecosystems and People, 2019, 15, 136-155.	3.2	35
102	Unmanned aircraft systems to unravel spatial and temporal factors affecting dynamics of colony formation and nesting success in birds. Journal of Avian Biology, 2017, 48, 1273-1280.	1.2	34
103	Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery. PLoS ONE, 2019, 14, e0213027.	2.5	34
104	Factors affecting bird communities in fragments ofsecondary pine forests in the north-western Mediterranean basin. Acta Oecologica, 2001, 22, 21-31.	1.1	32
105	The need for largeâ€scale distribution data to estimate regional changes in species richness under future climate change. Diversity and Distributions, 2017, 23, 1393-1407.	4.1	32
106	Modelling invasive alien species distributions from digital biodiversity atlases. Model upscaling as a means of reconciling data at different scales. Diversity and Distributions, 2012, 18, 1177-1189.	4.1	30
107	Is Response to Fire Influenced by Dietary Specialization and Mobility? A Comparative Study with Multiple Animal Assemblages. PLoS ONE, 2014, 9, e88224.	2.5	30
108	Calibrating the Severity of Forest Defoliation by Pine Processionary Moth with Landsat and UAV Imagery. Sensors, 2018, 18, 3278.	3.8	30

#	Article	IF	CITATIONS
109	Contrasting impacts of precipitation on Mediterranean birds and butterflies. Scientific Reports, 2019, 9, 5680.	3.3	30
110	The combined effects of landâ€use legacies and novel fire regimes on bird distributions in the Mediterranean. Journal of Biogeography, 2013, 40, 1535-1547.	3.0	29
111	Synergies Between Forest Biomass Extraction for Bioenergy and Fire Suppression in Mediterranean Ecosystems: Insights from a Storyline-and-Simulation Approach. Ecosystems, 2016, 19, 786-802.	3.4	29
112	Assessing the role of Natura 2000 at maintaining dynamic landscapes in Europe over the last two decades: implications for conservation. Landscape Ecology, 2018, 33, 1447-1460.	4.2	29
113	Temporal changes in Mediterranean forest ecosystem services are driven by stand development, rather than by climate-related disturbances. Forest Ecology and Management, 2021, 480, 118623.	3.2	29
114	Community-based processes behind species richness gradients: contrasting abundance–extinction dynamics and sampling effects in areas of low and high productivity. Global Ecology and Biogeography, 2007, 16, 709-719.	5.8	28
115	Natural, human and spatial constraints to expanding populations of otters in the Iberian Peninsula. Journal of Biogeography, 2010, 37, 2345-2357.	3.0	28
116	A spatial allocation procedure to model land-use/land-cover changes: Accounting for occurrence and spread processes. Ecological Modelling, 2017, 344, 73-86.	2.5	28
117	Evaluating forest resilience to global threats using functional response traits and network properties. Ecological Applications, 2020, 30, e02095.	3.8	28
118	Tree planting: A doubleâ€edged sword to fight climate change in an era of megafires. Global Change Biology, 2021, 27, 3001-3003.	9.5	28
119	Mapping from heterogeneous biodiversity monitoring data sources. Biodiversity and Conservation, 2012, 21, 2927-2948.	2.6	27
120	Integrating fire spread patterns in fire modelling at landscape scale. Environmental Modelling and Software, 2016, 86, 219-231.	4.5	27
121	Realising the potential of Natura 2000 to achieve EU conservation goals as 2020 approaches. Scientific Reports, 2019, 9, 16087.	3.3	27
122	Individual food-hoarding decisions in a nonterritorial coal tit population: the role of social context. Animal Behaviour, 2000, 60, 395-402.	1.9	26
123	Spatial extent of bird species response to landscape changes: colonisation/extinction dynamics at the communityâ€level in two contrasting habitats. Ecography, 2008, 31, 509-518.	4.5	26
124	Random sampling, abundance–extinction dynamics and nicheâ€filtering immigration constraints explain the generation of species richness gradients. Global Ecology and Biogeography, 2008, 17, 352-362.	5.8	26
125	Modeling bird species distribution change in fire prone Mediterranean landscapes: incorporating species dispersal and landscape dynamics. Ecography, 2012, 35, 458-467.	4.5	26
126	Agricultural landscape composition as a driver of farmland bird diversity in Brittany (NW France). Agriculture, Ecosystems and Environment, 2015, 205, 79-89.	5.3	26

#	Article	lF	CITATIONS
127	Degradation in landscape matrix has diverse impacts on diversity in protected areas. PLoS ONE, 2017, 12, e0184792.	2.5	26
128	Valuing acorn dispersal and resprouting capacity ecological functions to ensure Mediterranean forest resilience after fire. European Journal of Forest Research, 2012, 131, 835-844.	2.5	25
129	Building on Margalef: Testing the links between landscape structure, energy and information flows driven by farming and biodiversity. Science of the Total Environment, 2019, 674, 603-614.	8.0	25
130	Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conservation Biology, 2020, 34, 666-676.	4.7	25
131	Ecosystem services provision by Mediterranean forests will be compromised above $2\hat{a}$, f warming. Global Change Biology, 2021, 27, 4210-4222.	9.5	25
132	Effect of increased food abundance near forest edges on flocking patterns of Coal TitParus aterwinter groups in mountain coniferous forests. Bird Study, 2003, 50, 106-111.	1.0	24
133	Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: dynamic distribution modelling of an early-successional species—the near-threatened Dartford Warbler (Sylvia undata). Journal of Ornithology, 2015, 156, 275-286.	1.1	24
134	Hindcasting the impacts of landâ€use changes on bird communities with species distribution models of Bird Atlas data. Ecological Applications, 2018, 28, 1867-1883.	3.8	24
135	Reconciling expert judgement and habitat suitability models as tools for guiding sampling of threatened species. Journal of Applied Ecology, 2015, 52, 1608-1616.	4.0	23
136	Climate change distracts us from other threats to biodiversity. Frontiers in Ecology and the Environment, 2016, 14, 291-291.	4.0	23
137	Historical citizen science to understand and predict climate-driven trout decline. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20161979.	2.6	23
138	Population responses of bird populations to climate change on two continents vary with species' ecological traits but not with direction of change in climate suitability. Climatic Change, 2019, 157, 337-354.	3.6	23
139	Wintering bird communities are tracking climate change faster than breeding communities. Journal of Animal Ecology, 2021, 90, 1085-1095.	2.8	23
140	Bird population declines and species turnover are changing the acoustic properties of spring soundscapes. Nature Communications, 2021, 12, 6217.	12.8	23
141	Identifying setâ€aside features for bird conservation and management in northeast Iberian pseudoâ€steppes. Bird Study, 2010, 57, 289-300.	1.0	22
142	Modelling seasonal changes in the distribution of <scp>C</scp> ommon <scp>Q</scp> uail <i><scp>C</scp>oturnix coturnix</i> in farmland landscapes using remote sensing. Ibis, 2012, 154, 703-713.	1.9	22
143	Habitat selection by Ortolan Buntings <i>Emberiza hortulana</i> in postâ€fire succession in Catalonia: implications for the conservation of farmland populations. Ibis, 2009, 151, 752-761.	1.9	21
144	A new exotic bird in Europe: recent spread and potential range of Redâ€billed Leiothrix Leiothrix lutea in Catalonia (northeast Iberian Peninsula). Bird Study, 2010, 57, 226-235.	1.0	21

LLUÃS BROTONS

#	Article	IF	CITATIONS
145	Effects of forest landscape change and management on the range expansion of forest bird species in the Mediterranean region. Forest Ecology and Management, 2010, 259, 1338-1346.	3.2	21
146	Estimating the Threshold of Detection on Tree Crown Defoliation Using Vegetation Indices from UAS Multispectral Imagery. Drones, 2019, 3, 80.	4.9	21
147	Unmanned aerial system protocol for quarry restoration and mineral extraction monitoring. Journal of Environmental Management, 2020, 270, 110717.	7.8	21
148	Uncertainty in thermal tolerances and climatic debt. Nature Climate Change, 2012, 2, 638-639.	18.8	20
149	A Resource-Based Modelling Framework to Assess Habitat Suitability for Steppe Birds in Semiarid Mediterranean Agricultural Systems. PLoS ONE, 2014, 9, e92790.	2.5	20
150	Species Distribution Models and Impact Factor Growth in Environmental Journals: Methodological Fashion or the Attraction of Global Change Science. PLoS ONE, 2014, 9, e111996.	2.5	20
151	Tools for exploring habitat suitability for steppe birds under land use change scenarios. Agriculture, Ecosystems and Environment, 2015, 200, 119-125.	5.3	20
152	The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests. Regional Environmental Change, 2019, 19, 415-428.	2.9	20
153	Bird Community Responses to Vegetation Heterogeneity Following Non-Direct Regeneration of Mediterranean Forests after Fire. Ardea, 2011, 99, 73-84.	0.6	19
154	The effect of postfire salvage logging on bird communities in Mediterranean pine forests: the benefits for declining species. Journal of Applied Ecology, 2012, 49, 644-651.	4.0	19
155	Recent fire history and connectivity patterns determine bird species distribution dynamics in landscapes dominated by land abandonment. Landscape Ecology, 2012, 27, 171-184.	4.2	19
156	Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. Forest Ecology and Management, 2018, 407, 95-105.	3.2	19
157	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	4.1	19
158	Using fire to enhance rewilding when agricultural policies fail. Science of the Total Environment, 2021, 755, 142897.	8.0	19
159	Aridity influences the recovery of vegetation and shrubland birds after wildfire. PLoS ONE, 2017, 12, e0173599.	2.5	19
160	Woodlarks <i>Lullula arborea</i> and landscape heterogeneity created by land abandonment. Bird Study, 2011, 58, 99-106.	1.0	18
161	Assessing the role of landscape connectivity in recent woodpecker range expansion in Mediterranean Europe: forest management implications. European Journal of Forest Research, 2013, 132, 181-194.	2.5	18
162	Conservation Traps and Longâ€Term Species Persistence in Humanâ€Dominated Systems. Conservation Letters, 2015, 8, 456-462.	5.7	18

#	Article	IF	CITATIONS
163	Mediterranean fire regime effects on pine-oak forest landscape mosaics under global change in NE Spain. European Journal of Forest Research, 2016, 135, 403-416.	2.5	18
164	Tradeâ€offs and synergies between bird conservation and wildfire suppression in the face of global change. Journal of Applied Ecology, 2018, 55, 2181-2192.	4.0	17
165	The future distribution of wetland birds breeding in Europe validated against observed changes in distribution. Environmental Research Letters, 2022, 17, 024025.	5.2	17
166	Four ideas to boost EU conservation policy as 2020 nears. Environmental Research Letters, 2019, 14, 101001.	5.2	16
167	Calibrating Sentinel-2 Imagery with Multispectral UAV Derived Information to Quantify Damages in Mediterranean Rice Crops Caused by Western Swamphen (Porphyrio porphyrio). Drones, 2019, 3, 45.	4.9	16
168	Potencial de las imágenes UAV como datos de verdad terreno para la clasificación de la severidad de quema de imágenes Landsat: aproximaciones a un producto útil para la gestión post incendio. Revista De Teledeteccion, 2017, , 91.	0.6	16
169	Age-Related Microhabitat Segregation in Willow Tit Parus montanus Winter Flocks. Ethology, 2000, 106, 993-1005.	1.1	14
170	Food hoarding behaviour of black-capped chickadees (Poecile atricapillus) in relation to forest edges. Oikos, 2001, 95, 511-519.	2.7	14
171	Teasing out biological effects and sampling artifacts when using occupancy rate in monitoring programs. Journal of Field Ornithology, 2008, 79, 159-169.	0.5	14
172	Wildfire–vegetation dynamics affect predictions of climate change impact on bird communities. Ecography, 2018, 41, 982-995.	4.5	14
173	The role of natural habitats in agricultural systems for bird conservation: the case of the threatened Lesser Grey Shrike. Biodiversity and Conservation, 2008, 17, 1997-2012.	2.6	13
174	Comparing the effect of salvage logging on birds in the Mediterranean Basin and the Rocky Mountains: Common patterns, different conservation implications. Biological Conservation, 2013, 158, 7-13.	4.1	13
175	Improved empirical tests of area-heterogeneity tradeoffs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2858-60.	7.1	13
176	Optimising longâ€ŧerm monitoring projects for species distribution modelling: how atlas data may help. Ecography, 2015, 38, 29-40.	4.5	13
177	Spatial prioritisation of EU's LIFE-Nature programme to strengthen the conservation impact of Natura 2000. Journal of Applied Ecology, 2018, 55, 1575-1582.	4.0	13
178	Bridging the Divide: Integrating Animal and Plant Paradigms to Secure the Future of Biodiversity in Fire-Prone Ecosystems. Fire, 2018, 1, 29.	2.8	13
179	Ecological traps and species distribution models: a challenge for prioritizing areas of conservation importance. Ecography, 2020, 43, 365-375.	4.5	13
180	Predicting the potential distribution and forest impact of the invasive species <i>Cydalima perspectalis</i> in Europe. Ecology and Evolution, 2021, 11, 5713-5727.	1.9	13

#	Article	IF	CITATIONS
181	Aridity, fire severity and proximity of populations affect the temporal responses of open-habitat birds to wildfires. Biological Conservation, 2022, 272, 109661.	4.1	13
182	Do bird spatial distribution patterns reflect population trends in changing landscapes?. Landscape Ecology, 2009, 24, 893-906.	4.2	12
183	Postfire forest management and Mediterranean birds: the importance of the logging remnants. Biodiversity and Conservation, 2009, 18, 2153-2164.	2.6	12
184	Calibration of hybrid species distribution models: the value of generalâ€purpose vs. targeted monitoring data. Diversity and Distributions, 2012, 18, 977-989.	4.1	12
185	Disentangling the Influence of Past Fires on Subsequent Fires in Mediterranean Landscapes. Ecosystems, 2019, 22, 1338-1351.	3.4	12
186	Ecosystem service mapping needs to capture more effectively the biodiversity important for service supply. Ecosystem Services, 2021, 48, 101259.	5.4	12
187	Forest connectivity percolation thresholds for fire spread under different weather conditions. Forest Ecology and Management, 2021, 498, 119558.	3.2	12
188	Influence of morphology on winter residence and recruitment in juvenile coal tits (Parus ater) after the post-fledging period. Ecoscience, 2003, 10, 273-282.	1.4	11
189	Priority questions for biodiversity conservation in the Mediterranean biome: Heterogeneous perspectives across continents and stakeholders. Conservation Science and Practice, 2019, 1, e118.	2.0	11
190	From stand to landscape: modelling post-fire regeneration and species growth. Ecological Modelling, 2019, 404, 103-111.	2.5	11
191	Attracting and capturing Coal TitsParus ater:Biases associated with the use of tape lures. Ringing and Migration, 2000, 20, 129-133.	0.4	10
192	Coal Tit fat-storing patterns during the non-breeding season: the role of residence status. Journal of Avian Biology, 2001, 32, 333-337.	1.2	10
193	Geographic variation of the storing behaviour in the Coal tit Parus ater: role of winter residency and environmental conditions. Ibis, 1999, 141, 587-595.	1.9	10
194	Winter spacing and nonâ€breeding social system of the Coal Tit <i>Parus ater</i> in a subalpine forest. Ibis, 2000, 142, 657-667.	1.9	10
195	Efficiency of species survey networks can be improved by integrating different monitoring approaches in a spatial prioritization design. Conservation Letters, 2018, 11, e12591.	5.7	9
196	Correspondence: Uncertainty in Climate-Vegetation Feedbacks on Fire Regimes Challenges Reliable Long-Term Projections of Burnt Area from Correlative Models. Fire, 2019, 2, 8.	2.8	9
197	Geographical variation in the distributional constraints along a gradient of population aggregation. Acta Oecologica, 2010, 36, 666-674.	1.1	8
198	Conservation planning in a fire-prone Mediterranean region: threats and opportunities for bird species. Landscape Ecology, 2013, 28, 1517-1528.	4.2	8

#	Article	IF	CITATIONS
199	IPBES Promotes Integration of Multiple Threats to Biodiversity. Trends in Ecology and Evolution, 2019, 34, 969-970.	8.7	8
200	Assessing regional variation in conservation value using fine-grained bird atlases. Biodiversity and Conservation, 2010, 19, 867-881.	2.6	7
201	Local and landscape-scale biotic correlates of mistletoe distribution in Mediterraean pine forests. Forest Systems, 2012, 21, 179.	0.3	7
202	Direct and indirect effects of pollution on the foraging behaviour of forest passerines during the breeding season. Canadian Journal of Zoology, 1998, 76, 556-565.	1.0	6
203	The value of unprotected land for future conservation efforts under dynamic conditions. Biological Conservation, 2021, 261, 109232.	4.1	6
204	Fire ecology for the 21st century: Conserving biodiversity in the age of megafire. Diversity and Distributions, 2022, 28, 350-356.	4.1	6
205	Macroecological Patterns in Forest Bird Diversity in Europe. , 0, , 137-182.		5
206	MUSE instrument global performance test. Proceedings of SPIE, 2012, , .	0.8	5
207	Using the first European Breeding Bird Atlas for science and perspectives for the new Atlas. Bird Study, 2019, 66, 149-158.	1.0	5
208	A quantitative assessment of mid-term risks of global change on forests in Western Mediterranean Europe. Regional Environmental Change, 2019, 19, 819-831.	2.9	5
209	Nature Conservation $\hat{a} \in $ a new dimension in Open Access publishing bridging science and application. Nature Conservation, 0, 1, 1-10.	0.0	5
210	Anticipating B. sempervirens viability in front of C. perspectalis outbreaks, fire, and drought disturbances. Science of the Total Environment, 2022, 810, 151331.	8.0	5
211	Mediterranean Forest Bird Communities and the Role of Landscape Heterogeneity in Space and Time. , 0, , 318-349.		4
212	Addressing a critique of the TEASI framework for invasive species risk assessment. Ecology Letters, 2013, 16, 1415-e6.	6.4	4
213	Niche constraints to the northwards expansion of the common genet (Genetta genetta, Linnaeus 1758) in Europe. Mammalian Biology, 2016, 81, 399-409.	1.5	4
214	Indicators of the Effects of the Urban Greening on Birds: The Case of Barcelona. , 2017, , 449-463.		4
215	Evaluating the reliability of species distribution models with an indirect measure of bird reproductive performance. Journal of Avian Biology, 2017, 48, 1575-1582.	1.2	4
216	European Wilderness in a Time of Farmland Abandonment. , 2015, , 25-46.		4

#	Article	IF	CITATIONS
217	An assessment of relative habitat use as a metric for species' habitat association and degree of specialization. Ecological Indicators, 2022, 135, 108521.	6.3	4
218	Spatial prioritisation of management zones in protected areas for the integration of multiple objectives. Biodiversity and Conservation, 2022, 31, 1197-1215.	2.6	4
219	Fluctuating asymmetry in Sardinian WarblersSylvia melanocephalainhabiting two shrublands affected by fire. Bird Study, 2001, 48, 180-187.	1.0	3
220	The MUSE project from the dream toward reality. , 2010, , .		3
221	Population Estimates: Towards Standardised Protocols as a Basis for Comparability. Ardeola, 2011, 58, 365-370.	0.7	3
222	Connectivity Determines Post-Fire Colonisation By Open-Habitat Bird Species: The Case of the Ortolan BuntingEmberiza hortulana. Ardeola, 2012, 59, 57-74.	0.7	3
223	The MUSE project face to face with reality. Proceedings of SPIE, 2012, , .	0.8	3
224	Environmental stress effects on reproduction and sexual dimorphism in the gynodioecious species Silene acaulis. Environmental and Experimental Botany, 2018, 146, 27-33.	4.2	3
225	Reply to â€~a comment on the limitations of UAVs in wildlife research – the example of colonial nesting waterbirds'. Journal of Avian Biology, 2018, 49, e01902.	1.2	3
226	UAS Remote Sensing Products for Supporting Extraction Management and Restoration Monitoring in Open-Pit Mines. Proceedings (mdpi), 2019, 30, 4.	0.2	3
227	Winter Territoriality and Irruptive Behavior in the Paridae. Auk, 2000, 117, 807-811.	1.4	2
228	A multi-scale landscape approach to understand dispersal of the mistletoe by birds in Mediterranean pine forests. Landscape Ecology, 0, , 1.	4.2	2
229	Geographical variation in reproductive investment across avian assemblages in Europe: effects of environmental drivers differ between altricial and precocial species. Journal of Avian Biology, 2017, 48, 976-987.	1.2	1
230	Estimating the Severity of Defoliation Due to Pine Processionary Moth Using a Combination of Landsat and UAV Imagery. , 2018, , .		1
231	How can climate change affect the potential distribution of common genet Genetta genetta (Linnaeus) Tj ETQq	1 1 0,7843 1.3	314 rgBT /Ov
232	The Role of Natura 2000 at Maintaining Dynamic Landscapes in Europe Over the Last Two Decades: Implications for Conservation. Innovations in Landscape Research, 2019, , 665-680.	0.4	1
233	Peer-review warning: system error, reviewers not found. Frontiers in Ecology and the Environment, 2015, 13, 241-242.	4.0	0
234	Forest Avian Species Richness Distribution and Management Guidelines under Global Change in Mediterranean Landscapes. , 2011, , 231-251.		0

#	Article	IF	CITATIONS
235	Biodiversity loss for rural abandonment in LTER Montseny measured by bird surveys. Ecosistemas, 2016, 25, 58-64.	0.4	0