List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4705251/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives.<br>Advances in Polymer Science, 2000, , 41-156.                                                      | 0.8 | 336       |
| 2  | Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches:<br>Application to ?-amylase inhibitor. Proteins: Structure, Function and Bioinformatics, 2000, 40, 512-524. | 2.6 | 260       |
| 3  | Dynamics of large proteins through hierarchical levels of coarse-grained structures. Journal of<br>Computational Chemistry, 2002, 23, 119-127.                                                          | 3.3 | 224       |
| 4  | Reverse Mapping of Coarse-Grained Polyethylene Chains from the Second Nearest Neighbor Diamond<br>Lattice to an Atomistic Model in Continuous Space. Macromolecules, 1997, 30, 5520-5526.               | 4.8 | 101       |
| 5  | <i>ProDy</i> 2.0: increased scale and scope after 10 years of protein dynamics modelling with Python.<br>Bioinformatics, 2021, 37, 3657-3659.                                                           | 4.1 | 93        |
| 6  | Simulation of Polyethylene Thin Films on a High Coordination Lattice. Macromolecules, 1998, 31, 1418-1426.                                                                                              | 4.8 | 86        |
| 7  | Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Current Opinion in Structural Biology, 2020, 62, 14-21.                                                                   | 5.7 | 85        |
| 8  | Functional Motions of Influenza Virus Hemagglutinin: A Structure-Based Analytical Approach.<br>Biophysical Journal, 2002, 82, 569-581.                                                                  | 0.5 | 77        |
| 9  | Molecular simulations of small gas diffusion and solubility in copolymers of styrene. Polymer, 2003, 44, 3607-3620.                                                                                     | 3.8 | 70        |
| 10 | Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae. Process<br>Biochemistry, 1998, 33, 763-771.                                                                   | 3.7 | 69        |
| 11 | Mobility of the Surface and Interior of Thin Films Composed of Amorphous Polyethylene.<br>Macromolecules, 1999, 32, 194-198.                                                                            | 4.8 | 64        |
| 12 | Effect of Cooperative Hydrogen Bonding in Azoâ^'Hydrazone Tautomerism of Azo Dyes. Journal of<br>Physical Chemistry A, 2007, 111, 13506-13514.                                                          | 2.5 | 62        |
| 13 | The ribosome structure controls and directs mRNA entry, translocation and exit dynamics. Physical Biology, 2008, 5, 046005.                                                                             | 1.8 | 61        |
| 14 | Mixed levels of coarse-graining of large proteins using elastic network model succeeds in extracting the slowest motions. Polymer, 2004, 45, 649-657.                                                   | 3.8 | 55        |
| 15 | Functional motions can be extracted from on-lattice construction of protein structures. Proteins:<br>Structure, Function and Bioinformatics, 2003, 53, 174-181.                                         | 2.6 | 53        |
| 16 | Conformational Transition Pathways Explored by Monte Carlo Simulation Integrated with Collective<br>Modes. Biophysical Journal, 2008, 95, 5862-5873.                                                    | 0.5 | 53        |
| 17 | Loop Motions of Triosephosphate Isomerase Observed with Elastic Networks. Biochemistry, 2006, 45, 1173-1182.                                                                                            | 2.5 | 52        |
| 18 | Molecular dynamics simulations on constraint metal binding peptides. Polymer, 2005, 46, 4307-4313.                                                                                                      | 3.8 | 47        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Focused Functional Dynamics of Supramolecules by Use of a Mixed-Resolution Elastic Network Model.<br>Biophysical Journal, 2009, 97, 1178-1187.                                                        | 0.5 | 46        |
| 20 | ClustENM: ENM-Based Sampling of Essential Conformational Space at Full Atomic Resolution. Journal of Chemical Theory and Computation, 2016, 12, 4549-4562.                                            | 5.3 | 43        |
| 21 | Molecular simulations of gas transport in nitrile rubber and styrene butadiene rubber. Polymer, 2006, 47, 7835-7845.                                                                                  | 3.8 | 42        |
| 22 | Collective dynamics of the ribosomal tunnel revealed by elastic network modeling. Proteins:<br>Structure, Function and Bioinformatics, 2009, 75, 837-845.                                             | 2.6 | 42        |
| 23 | A Docking Study Using Atomistic Conformers Generated via Elastic Network Model for Cyclosporin<br>A/Cyclophilin A Complex. Journal of Biomolecular Structure and Dynamics, 2009, 27, 13-25.           | 3.5 | 42        |
| 24 | Coupling between Catalytic Loop Motions and Enzyme Global Dynamics. PLoS Computational Biology,<br>2012, 8, e1002705.                                                                                 | 3.2 | 42        |
| 25 | Role of water on unfolding kinetics of helical peptides studied by molecular dynamics simulations.<br>Biophysical Journal, 1997, 72, 2445-2456.                                                       | 0.5 | 41        |
| 26 | A second generation of mapping/reverse mapping of coarse-grained and fully atomistic models of polymer melts. Macromolecular Theory and Simulations, 1999, 8, 463-478.                                | 1.4 | 40        |
| 27 | Simulation of an amorphous polyethylene nanofiber on a high coordination lattice. Macromolecular<br>Theory and Simulations, 2000, 9, 1-13.                                                            | 1.4 | 39        |
| 28 | Allosteric interactions in the parathyroid hormone GPCR–arrestin complex formation. Nature<br>Chemical Biology, 2020, 16, 1096-1104.                                                                  | 8.0 | 38        |
| 29 | Segregation of Chain Ends Is a Weak Contributor to Increased Mobility at Free Polymer Surfaces.<br>Journal of Physical Chemistry B, 1999, 103, 178-183.                                               | 2.6 | 36        |
| 30 | Dimerization Affects Collective Dynamics of Triosephosphate Isomerase. Biochemistry, 2008, 47, 1358-1368.                                                                                             | 2.5 | 35        |
| 31 | Essential site scanning analysis: A new approach for detecting sites that modulate the dispersion of protein global motions. Computational and Structural Biotechnology Journal, 2020, 18, 1577-1586. | 4.1 | 35        |
| 32 | Collective Dynamics of Large Proteins from Mixed Coarse-Grained Elastic Network Model. QSAR and Combinatorial Science, 2005, 24, 443-448.                                                             | 1.4 | 33        |
| 33 | Towards gaining sight of multiscale events: utilizing network models and normal modes in hybrid methods. Current Opinion in Structural Biology, 2020, 64, 34-41.                                      | 5.7 | 32        |
| 34 | Effect of absorbed water on oxygen transport in EVOH matrices. A molecular dynamics study.<br>Polymer, 2004, 45, 3555-3564.                                                                           | 3.8 | 30        |
| 35 | How an Inhibitor Bound to Subunit Interface Alters Triosephosphate Isomerase Dynamics. Biophysical<br>Journal, 2015, 109, 1169-1178.                                                                  | 0.5 | 28        |
| 36 | Effect of intracellular loop 3 on intrinsic dynamics of human β2-adrenergic receptor. BMC Structural<br>Biology, 2013, 13, 29.                                                                        | 2.3 | 25        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Important fluctuation dynamics of large protein structures are preserved upon coarse-grained renormalization. International Journal of Quantum Chemistry, 2002, 90, 822-837.                                            | 2.0 | 23        |
| 38 | Application of time series analysis on molecular dynamics simulations of proteins: A study of<br>different conformational spaces by principal component analysis. Journal of Chemical Physics, 2004,<br>121, 4759-4769. | 3.0 | 22        |
| 39 | Collective Motions of RNA Polymerases. Analysis of Core Enzyme, Elongation Complex and Holoenzyme. Journal of Biomolecular Structure and Dynamics, 2004, 22, 267-280.                                                   | 3.5 | 22        |
| 40 | Features of Large Hinge-Bending Conformational Transitions. Prediction of Closed Structure from Open State. Biophysical Journal, 2014, 106, 2656-2666.                                                                  | 0.5 | 21        |
| 41 | Rotational isomeric state models for polyoxyethylene and polythiaethylene on a high coordination lattice. Journal of Chemical Physics, 1996, 104, 8742-8749.                                                            | 3.0 | 20        |
| 42 | Dynamics of bulk polyethylene on a high coordination lattice. Macromolecular Symposia, 1998, 133,<br>47-70.                                                                                                             | 0.7 | 19        |
| 43 | Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network<br>Model Based Algorithm for Highly Flexible Proteins. PLoS ONE, 2016, 11, e0158063.                                       | 2.5 | 18        |
| 44 | Investigation of allosteric coupling in human β2-adrenergic receptor in the presence of intracellular<br>loop 3. BMC Structural Biology, 2016, 16, 9.                                                                   | 2.3 | 18        |
| 45 | RESPEC Incorporates Residue Specificity and the Ligand Effect into the Elastic Network Model. Journal of Physical Chemistry B, 2018, 122, 5347-5355.                                                                    | 2.6 | 16        |
| 46 | Effect of Surface Roughness on Structure and Dynamics in Thin Films. Macromolecular Theory and Simulations, 2001, 10, 363-367.                                                                                          | 1.4 | 15        |
| 47 | Collective Dynamics ofEcoRI-DNA Complex by Elastic Network Model and Molecular Dynamics<br>Simulations. Journal of Biomolecular Structure and Dynamics, 2006, 24, 1-15.                                                 | 3.5 | 15        |
| 48 | Sampling of Protein Conformational Space Using Hybrid Simulations: A Critical Assessment of Recent<br>Methods. Frontiers in Molecular Biosciences, 2022, 9, 832847.                                                     | 3.5 | 14        |
| 49 | Cooperative Fluctuations Point to the Dimerization Interface of P53 Core Domain. Biophysical Journal, 2006, 91, 421-432.                                                                                                | 0.5 | 13        |
| 50 | Blind Dockings of Benzothiazoles to Multiple Receptor Conformations of Triosephosphate Isomerase<br>from <i>Trypanosoma cruzi</i> and Human. Molecular Informatics, 2011, 30, 986-995.                                  | 2.5 | 12        |
| 51 | Collective deformations in proteins determined by a mode analysis of molecular dynamics trajectories. Polymer, 2002, 43, 431-439.                                                                                       | 3.8 | 11        |
| 52 | Simulation of polyethylene thin films composed of various chain lengths. Polymer, 2002, 43, 425-430.                                                                                                                    | 3.8 | 11        |
| 53 | ClustENMD: efficient sampling of biomolecular conformational space at atomic resolution.<br>Bioinformatics, 2021, 37, 3956-3958.                                                                                        | 4.1 | 11        |
| 54 | Precise druggability of the PTH type 1 receptor. Nature Chemical Biology, 2022, 18, 272-280.                                                                                                                            | 8.0 | 11        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Solvent effect on translational diffusivity and orientational mobility of polymers in solution: A molecular dynamics study. Journal of Chemical Physics, 1993, 99, 2235-2246.                                                                           | 3.0 | 10        |
| 56 | Time series analysis of collective motions in proteins. Journal of Chemical Physics, 2004, 120, 1072-1088.                                                                                                                                              | 3.0 | 10        |
| 57 | Effect of ligand binding on the intraminimum dynamics of proteins. Journal of Computational Chemistry, 2011, 32, 483-496.                                                                                                                               | 3.3 | 10        |
| 58 | Protein–Ligand Complexes as Constrained Dynamical Systems. Journal of Chemical Information and Modeling, 2019, 59, 2352-2358.                                                                                                                           | 5.4 | 10        |
| 59 | Ligandâ€binding affinity of alternative conformers of human β 2 â€adrenergic receptor in the presence of<br>intracellular loop 3 ( ICL 3) and their potential use in virtual screening studies. Chemical Biology and<br>Drug Design, 2019, 93, 883-899. | 3.2 | 9         |
| 60 | Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding.<br>Biophysical Journal, 2020, 118, 1782-1794.                                                                                                           | 0.5 | 9         |
| 61 | Conformational dynamics of bacterial trigger factor in apo and ribosome-bound states. PLoS ONE, 2017, 12, e0176262.                                                                                                                                     | 2.5 | 9         |
| 62 | Hierarchical structure of the energy landscape of proteins revisited by time series analysis. II.<br>Investigation of explicit solvent effects. Journal of Chemical Physics, 2005, 123, 144911.                                                         | 3.0 | 8         |
| 63 | Hierarchical structure of the energy landscape of proteins revisited by time series analysis. I.<br>Mimicking protein dynamics in different time scales. Journal of Chemical Physics, 2005, 123, 144910.                                                | 3.0 | 7         |
| 64 | Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches:<br>Application to αâ€amylase inhibitor. Proteins: Structure, Function and Bioinformatics, 2000, 40, 512-524.                                                | 2.6 | 7         |
| 65 | Substrate Effect on Catalytic Loop and Global Dynamics of Triosephosphate Isomerase. Entropy, 2013, 15, 1085-1099.                                                                                                                                      | 2.2 | 4         |
| 66 | Activation and Speciation Mechanisms in Class A GPCRs. Journal of Molecular Biology, 2022, 434, 167690.                                                                                                                                                 | 4.2 | 4         |
| 67 | Elastic Network Models of Coarse-Grained Proteins Are Effective for Studying the Structural Control Exerted over Their Dynamics. , 2008, , 237-254.                                                                                                     |     | 3         |
| 68 | Editorial: Understanding Protein Dynamics, Binding and Allostery for Drug Design. Frontiers in<br>Molecular Biosciences, 2021, 8, 681364.                                                                                                               | 3.5 | 2         |
| 69 | Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches:<br>Application to α-amylase inhibitor. , 0, .                                                                                                               |     | 2         |
| 70 | Simulations of Thin Films and Fibers of Amorphous Polymers. , 2002, , 117-126.                                                                                                                                                                          |     | 1         |
| 71 | Mimicking Protein Dynamics by the Integration of Elastic Network Model with Time Series Analysis.<br>International Journal of High Performance Computing Applications, 2007, 21, 59-65.                                                                 | 3.7 | 1         |