## Xi Zhang ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/4705096/publications.pdf Version: 2024-02-01 all docs 8433 6840 27,166 304 81 152 citations h-index g-index papers 324 324 324 24700 docs citations times ranked citing authors | # | Article | IF | CITATIONS | |----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 1 | Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials. Progress in Polymer Science, 2022, 124, 101486. | 11.8 | 36 | | 2 | In Situ Hypoxia-Induced Supramolecular Perylene Diimide Radical Anions in Tumors for Photothermal Therapy with Improved Specificity. Journal of the American Chemical Society, 2022, 144, 2360-2367. | 6.6 | 122 | | 3 | Cucurbit[7]uril-Modulated H/D Exchange of α-Carbonyl Hydrogen: Deceleration in Alkali and Acceleration in Acid Conditions. Langmuir, 2022, 38, 541-546. | 1.6 | 5 | | 4 | Degradable Bactericide Constructed Using a Charge-Reversal Surfactant against Plant Pathogenic Bacteria. ACS Applied Materials & Diterfaces, 2022, 14, 10134-10141. | 4.0 | 3 | | 5 | Supramolecular Polymerization at Interfaces. Langmuir, 2022, 38, 4157-4163. | 1.6 | 9 | | 6 | A Bacteriaâ€Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angewandte Chemie, 2022, 134, . | 1.6 | 10 | | 7 | A Bacteriaâ€Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angewandte<br>Chemie - International Edition, 2022, 61, . | 7.2 | 64 | | 8 | A Selfâ€Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angewandte Chemie - International Edition, 2021, 60, 706-710. | 7.2 | 97 | | 9 | A Selfâ€Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angewandte Chemie, 2021, 133, 716-720. | 1.6 | 25 | | 10 | Cucurbit[10]uril-Encapsulated Cationic Porphyrins with Enhanced Fluorescence Emission and Photostability for Cell Imaging. ACS Applied Materials & Interfaces, 2021, 13, 2269-2276. | 4.0 | 27 | | 11 | Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Hostâ€Enhanced Charge Transfer. Angewandte Chemie, 2021, 133, 9470-9474. | 1.6 | 3 | | 12 | Multi-recyclable Shape Memory Supramolecular Polyurea with Long Cycle Life and Superior Stability. , $2021, 3, 331-336.$ | | 24 | | 13 | Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Hostâ€Enhanced Charge Transfer. Angewandte Chemie - International Edition, 2021, 60, 9384-9388. | 7.2 | 26 | | 14 | Fluorescence "Turn-On―Enzyme-Responsive Supra-Amphiphile Fabricated by Host–Guest Recognition between γ-Cyclodextrin and a Tetraphenylethylene-Sodium Glycyrrhetinate Conjugate. Langmuir, 2021, 37, 6062-6068. | 1.6 | 15 | | 15 | Super Strong and Multi-Reusable Supramolecular Epoxy Hot Melt Adhesives. , 2021, 3, 1003-1009. | | 62 | | 16 | Tumor acidity-induced charge-reversal liposomal doxorubicin with enhanced cancer cell uptake and anticancer activity. Giant, 2021, 6, 100052. | 2.5 | 12 | | 17 | An Activatable Host–Guest Conjugate as a Nanocarrier for Effective Drug Release through Self-Inclusion. ACS Applied Materials & Self-Inclusion. | 4.0 | 15 | | 18 | Self-Motivated Supramolecular Combination Chemotherapy for Overcoming Drug Resistance Based on Acid-Activated Competition of Host–Guest Interactions. CCS Chemistry, 2021, 3, 1413-1425. | 4.6 | 46 | | # | Article | IF | CITATIONS | |----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 19 | Supramolecular polymer chemistry: From structural control to functional assembly. Progress in Polymer Science, 2020, 100, 101167. | 11.8 | 135 | | 20 | Introduction to supra-amphiphiles. Materials Chemistry Frontiers, 2020, 4, 11-11. | 3.2 | 3 | | 21 | Tuning the stability of organic radicals: from covalent approaches to non-covalent approaches.<br>Chemical Science, 2020, 11, 1192-1204. | 3.7 | 125 | | 22 | Frontispiece: Cucurbit $[\langle i \rangle n \langle i \rangle]$ urils for Supramolecular Catalysis. Chemistry - A European Journal, 2020, 26, . | 1.7 | 0 | | 23 | Tough and Multiâ€Recyclable Crossâ€Linked Supramolecular Polyureas via Incorporating Noncovalent<br>Bonds into Mainâ€Chains. Advanced Materials, 2020, 32, e2000096. | 11.1 | 174 | | 24 | Cucurbit[ <i>n</i> ]urils for Supramolecular Catalysis. Chemistry - A European Journal, 2020, 26, 15446-15460. | 1.7 | 61 | | 25 | Supramolecular Polymeric Radicals: Highly Promoted Formation and Stabilization of Naphthalenediimide Radical Anions. Macromolecular Rapid Communications, 2020, 41, 2000080. | 2.0 | 11 | | 26 | Activatable Photosensitizer for Smart Photodynamic Therapy Triggered by Reactive Oxygen Species in Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26982-26990. | 4.0 | 55 | | 27 | Charge-reversal surfactant antibiotic material for reducing microbial corrosion in petroleum exploitation and transportation. Science Advances, 2020, 6, eaba7524. | 4.7 | 19 | | 28 | pH/ROS Dual-Responsive Supramolecular Vesicles Fabricated by Carboxylated Pillar[6]arene-Based Host–Guest Recognition and Phenylboronic Acid Pinacol Ester Derivative. Langmuir, 2020, 36, 4080-4087. | 1.6 | 21 | | 29 | Highly Transparent, Underwater Self-Healing, and Ionic Conductive Elastomer Based on Multivalent Ion–Dipole Interactions. Chemistry of Materials, 2020, 32, 6310-6317. | 3.2 | 93 | | 30 | Host–Guest Interactions between Oxaliplatin and Cucurbit[7]uril/Cucurbit[7]uril Derivatives under Pseudo-Physiological Conditions. Langmuir, 2020, 36, 1235-1240. | 1.6 | 23 | | 31 | Supramolecular Peptide Therapeutics: Host–Guest Interaction-Assisted Systemic Delivery of Anticancer Peptides. CCS Chemistry, 2020, 2, 739-748. | 4.6 | 53 | | 32 | Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. Advanced Materials, 2019, 31, e1805092. | 11.1 | 380 | | 33 | A Supramolecular Radical Dimer: Highâ€Efficiency NIRâ€II Photothermal Conversion and Therapy.<br>Angewandte Chemie - International Edition, 2019, 58, 15526-15531. | 7.2 | 168 | | 34 | A Supramolecular Radical Dimer: Highâ€Efficiency NIRâ€II Photothermal Conversion and Therapy. Angewandte Chemie, 2019, 131, 15672-15677. | 1.6 | 44 | | 35 | Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models. Energies, 2019, 12, 300. | 1.6 | 5 | | 36 | Targeting the Cell Membrane by Charge-Reversal Amphiphilic Pillar[5] arene for the Selective Killing of Cancer Cells. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 38497-38502. | 4.0 | 61 | | # | Article | IF | Citations | |----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 37 | Supramolecular Switching Surface for Antifouling and Bactericidal Activities. ACS Applied Bio Materials, 2019, 2, 638-643. | 2.3 | 12 | | 38 | Supramolecular Emulsion Interfacial Polymerization. ACS Macro Letters, 2019, 8, 177-182. | 2.3 | 34 | | 39 | Molecular engineering of polymeric supra-amphiphiles. Chemical Society Reviews, 2019, 48, 989-1003. | 18.7 | 90 | | 40 | Stimuli-responsive materials: a web themed collection. Materials Chemistry Frontiers, 2019, 3, 10-11. | 3.2 | 21 | | 41 | Degradable Supramolecular Photodynamic Polymer Materials for Biofilm Elimination. ACS Applied Bio<br>Materials, 2019, 2, 2920-2926. | 2.3 | 27 | | 42 | Analyzing Carbon Emissions Embodied in Construction Services: A Dynamic Hybrid Input–Output Model with Structural Decomposition Analysis. Energies, 2019, 12, 1456. | 1.6 | 6 | | 43 | Antibacterial supramolecular polymers constructed <i>via </i> self-sorting: promoting antibacterial performance and controllable degradation. Materials Chemistry Frontiers, 2019, 3, 806-811. | 3.2 | 30 | | 44 | Cucurbit[7]uril promoted Fenton oxidation by modulating the redox property of catalysts. Chemical Communications, 2019, 55, 14127-14130. | 2.2 | 16 | | 45 | Fabrication of <i>nor-seco</i> -cucurbit[10]uril based supramolecular polymers <i>via</i> self-sorting. Chemical Communications, 2019, 55, 13836-13839. | 2.2 | 25 | | 46 | <i>In My Element</i> : Selenium. Chemistry - A European Journal, 2019, 25, 2649-2650. | 1.7 | 14 | | 47 | Dissipative Supramolecular Polymerization Powered by Light. CCS Chemistry, 2019, 1, 335-342. | 4.6 | 93 | | 48 | Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer. Biomaterials, 2018, 178, 697-705. | 5.7 | 74 | | 49 | Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie, 2018, 130, 6185-6189. | 1.6 | 11 | | 50 | Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie - International Edition, 2018, 57, 6077-6081. | 7.2 | 44 | | 51 | Supramolecular Interfacial Polymerization of Miscible Monomers: Fabricating Supramolecular Polymers with Tailor-Made Structures. Macromolecules, 2018, 51, 1620-1625. | 2.2 | 33 | | 52 | Supramolecular Chemotherapy: Carboxylated Pillar[6] arene for Decreasing Cytotoxicity of Oxaliplatin to Normal Cells and Improving Its Anticancer Bioactivity Against Colorectal Cancer. ACS Applied Materials & | 4.0 | 78 | | 53 | Cross-linked supramolecular polymers synthesized by photo-initiated thiol-ene click reaction of supramonomers. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 414-418. | 2.0 | 10 | | 54 | Antimicrobial cationic polymers: from structural design to functional control. Polymer Journal, 2018, 50, 33-44. | 1.3 | 187 | | # | Article | IF | Citations | |----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 55 | Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552. | 4.2 | 336 | | 56 | A supramolecular radical cation: folding-enhanced electrostatic effect for promoting radical-mediated oxidation. Chemical Science, 2018, 9, 5015-5020. | 3.7 | 21 | | 57 | Supramolecularly Catalyzed Polymerization: From Consecutive Dimerization to Polymerization. Angewandte Chemie, 2018, 130, 8681-8685. | 1.6 | 14 | | 58 | LMDI Decomposition of Energy-Related CO2 Emissions Based on Energy and CO2 Allocation Sankey Diagrams: The Method and an Application to China. Sustainability, 2018, 10, 344. | 1.6 | 31 | | 59 | Supramolecularly Catalyzed Polymerization: From Consecutive Dimerization to Polymerization. Angewandte Chemie - International Edition, 2018, 57, 8545-8549. | 7.2 | 80 | | 60 | pH-Induced Charge-Reversal Amphiphile with Cancer Cell-Selective Membrane-Disrupting Activity. ACS Applied Materials & Distribution (2018), 10, 21191-21197. | 4.0 | 34 | | 61 | Supramolecular Free Radicals: Fabrication, Modulation and Functions. Acta Chimica Sinica, 2018, 76, 659. | 0.5 | 10 | | 62 | Single-Molecule Force Spectroscopy Quantification of Adhesive Forces in Cucurbit[8]Uril Host–Guest Ternary Complexes. Langmuir, 2017, 33, 1343-1350. | 1.6 | 20 | | 63 | Supramolecular Chemotherapy: Cooperative Enhancement of Antitumor Activity by Combining Controlled Release of Oxaliplatin and Consuming of Spermine by Cucurbit[7]uril. ACS Applied Materials & Diterraces, 2017, 9, 8602-8608. | 4.0 | 148 | | 64 | Supramolecular Porphyrin Photosensitizers: Controllable Disguise and Photoinduced Activation of Antibacterial Behavior. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13950-13957. | 4.0 | 129 | | 65 | Correction to "Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule― Langmuir, 2017, 33, 5098-5098. | 1.6 | 2 | | 66 | Supramolecular Interfacial Polymerization: A Controllable Method of Fabricating Supramolecular Polymeric Materials. Angewandte Chemie - International Edition, 2017, 56, 7639-7643. | 7.2 | 108 | | 67 | Supramolecular Interfacial Polymerization: A Controllable Method of Fabricating Supramolecular Polymeric Materials. Angewandte Chemie, 2017, 129, 7747-7751. | 1.6 | 36 | | 68 | Host–Guest Interaction between Corona[ <i>n</i> ]arene and Bisquaternary Ammonium Derivatives for Fabricating Supra-Amphiphile. Langmuir, 2017, 33, 5829-5834. | 1.6 | 15 | | 69 | Tuning Supramolecular Structure and Functions of Peptide <i>bola</i> -Amphiphile by Solvent Evaporation–Dissolution. ACS Applied Materials & Discourse (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (19 | 4.0 | 32 | | 70 | Visible-Light Photoinduced Electron Transfer Promoted by Cucurbit[8]uril-Enhanced Charge Transfer Interaction: Toward Improved Activity of Photocatalysis. ACS Applied Materials & Emp; Interfaces, 2017, 9, 22635-22640. | 4.0 | 39 | | 71 | Supramolecular Hydrogels Fabricated from Supramonomers: A Novel Wound Dressing Material. ACS Applied Materials & Dressing Materials & Applied Materials & Dressing & Dressing Materials & Dressing Dressin | 4.0 | 135 | | 72 | Supramolecular catalyst functions in catalytic amount: cucurbit[8]uril accelerates the photodimerization of Brooker's merocyanine. Chemical Science, 2017, 8, 8357-8361. | 3.7 | 76 | | # | Article | IF | CITATIONS | |----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 73 | Supramolecular Germicide Switches through Hostâ€Guest Interactions for Decelerating Emergence of Drugâ€Resistant Pathogens. ChemistrySelect, 2017, 2, 7940-7945. | 0.7 | 16 | | 74 | Supramolecular Polymerization from Controllable Fabrication to Living Polymerization. Macromolecular Rapid Communications, 2017, 38, 1700312. | 2.0 | 41 | | 75 | Supramolecular Radical Anions Triggered by Bacteria Inâ€Situ for Selective Photothermal Therapy.<br>Angewandte Chemie, 2017, 129, 16457-16460. | 1.6 | 46 | | 76 | Supramolecular Polymerization Controlled through Kinetic Trapping. Angewandte Chemie, 2017, 129, 16802-16805. | 1.6 | 16 | | 77 | Supramolecular Radical Anions Triggered by Bacteria Inâ€Situ for Selective Photothermal Therapy.<br>Angewandte Chemie - International Edition, 2017, 56, 16239-16242. | 7.2 | 235 | | 78 | Supramolecular Polymerization Controlled through Kinetic Trapping. Angewandte Chemie - International Edition, 2017, 56, 16575-16578. | 7.2 | 64 | | 79 | Polymerization of supramonomers: A new way for fabricating supramolecular polymers and materials. Journal of Polymer Science Part A, 2017, 55, 604-609. | 2.5 | 25 | | 80 | pH-Responsive Host–Guest Complexation in Pillar[6]arene-Containing Polyelectrolyte Multilayer Films. Polymers, 2017, 9, 719. | 2.0 | 11 | | 81 | A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie - International Edition, 2016, 55, 8933-8937. | 7.2 | 69 | | 82 | Supramolecular Chemistry of Cucurbiturils: Tuning Cooperativity with Multiple Noncovalent Interactions from Positive to Negative. Langmuir, 2016, 32, 12352-12360. | 1.6 | 80 | | 83 | A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie, 2016, 128, 9079-9083. | 1.6 | 19 | | 84 | Controllable Supramolecular Polymerization Promoted by Host-Enhanced Photodimerization. ACS Macro Letters, 2016, 5, 1397-1401. | 2.3 | 37 | | 85 | An Amylase-Responsive Bolaform Supra-Amphiphile. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4927-4933. | 4.0 | 36 | | 86 | Supraâ€Amphiphiles for Functional Assemblies. Advanced Functional Materials, 2016, 26, 8920-8931. | 7.8 | 64 | | 87 | Cytotoxicity Regulated by Host–Guest Interactions: A Supramolecular Strategy to Realize Controlled Disguise and Exposure. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22780-22784. | 4.0 | 79 | | 88 | Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes. Journal of the American Chemical Society, 2016, 138, 16372-16379. | 6.6 | 82 | | 89 | Supramolecular Microgels Fabricated from Supramonomers. ACS Macro Letters, 2016, 5, 1084-1088. | 2.3 | 33 | | 90 | Polypseudorotaxane Constructed from Cationic Polymer with Cucurbit[7]uril for Controlled Antibacterial Activity. ACS Macro Letters, 2016, 5, 1109-1113. | 2.3 | 53 | | # | Article | IF | Citations | |-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 91 | Controllable supramolecular polymerization through self-sorting of aliphatic and aromatic motifs. Polymer Chemistry, 2016, 7, 1397-1404. | 1.9 | 37 | | 92 | Tuning the Energy Gap by Supramolecular Approaches: Towards Nearâ€Infrared Organic Assemblies and Materials. Small, 2016, 12, 24-31. | 5.2 | 56 | | 93 | Photo-responsive supramolecular polymers synthesized by olefin metathesis polymerization from supramonomers. Polymer Chemistry, 2016, 7, 2333-2336. | 1.9 | 37 | | 94 | Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule. Langmuir, 2016, 32, 2410-2418. | 1.6 | 25 | | 95 | The fabrication of a supra-amphiphile for dissipative self-assembly. Chemical Science, 2016, 7, 1151-1155. | 3.7 | 76 | | 96 | Pillar[6]arene Containing Multilayer Films: Reversible Uptake and Release of Guest Molecules with Methyl Viologen Moieties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3679-3685. | 4.0 | 49 | | 97 | How to Make Weak Noncovalent Interactions Stronger. Chemistry - A European Journal, 2015, 21, 11938-11946. | 1.7 | 36 | | 98 | Controllable Supramolecular Polymerization through Host–Guest Interaction and Photochemistry. ACS Macro Letters, 2015, 4, 611-615. | 2.3 | 53 | | 99 | Supramolecular Polymerization Controlled by Reversible Conformational Modulation. ACS Macro Letters, 2015, 4, 1410-1414. | 2.3 | 32 | | 100 | Controlling the Reactivity of the SeSe Bond by the Supramolecular Chemistry of Cucurbituril. ChemPhysChem, 2015, 16, 523-527. | 1.0 | 33 | | 101 | Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer. Polymer Chemistry, 2015, 6, 2817-2821. | 1.9 | 60 | | 102 | Tuning the Surface Activity of Gemini Amphiphile by the Host–Guest Interaction of Cucurbit[7]uril. Langmuir, 2015, 31, 120-124. | 1.6 | 46 | | 103 | Self-assembling 1D core/shell microrods by the introduction of additives: a one-pot and shell-tunable method. Chemical Science, 2015, 6, 4907-4911. | 3.7 | 8 | | 104 | Supramolecular free radicals: near-infrared organic materials with enhanced photothermal conversion. Chemical Science, 2015, 6, 3975-3980. | 3.7 | 174 | | 105 | Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. Chemical Reviews, 2015, 115, 7196-7239. | 23.0 | 1,065 | | 106 | A supramolecular strategy for tuning the energy level of naphthalenediimide: Promoted formation of radical anions with extraordinary stability. Chemical Science, 2015, 6, 3342-3346. | 3.7 | 102 | | 107 | Single-Molecule Force Spectroscopy of an Artificial DNA Duplex Comprising a Silver(I)-Mediated Base Pair. Langmuir, 2015, 31, 11305-11310. | 1.6 | 26 | | 108 | Self-Assembly of a Functional Oligo(Aniline)-Based Amphiphile into Helical Conductive Nanowires. Journal of the American Chemical Society, 2015, 137, 14288-14294. | 6.6 | 57 | | # | Article | IF | CITATIONS | |-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 109 | Cucurbit[8]uril as Nanocontainer in a Polyelectrolyte Multilayer Film: A Quantitative and Kinetic Study of Guest Uptake. Langmuir, 2015, 31, 10734-10742. | 1.6 | 18 | | 110 | Tuning Polymeric Amphiphilicity via Se–N Interactions: Towards One tep Double Emulsion for Highly Selective Enzyme Mimics. Small, 2015, 11, 1537-1541. | 5.2 | 43 | | 111 | Supramolecular polymers synthesized by thiol–ene click polymerization from supramonomers. Polymer Chemistry, 2015, 6, 369-372. | 1.9 | 25 | | 112 | Amphiphilic diselenide-containing supramolecular polymers. Polymer Chemistry, 2015, 6, 681-685. | 1.9 | 37 | | 113 | Enzyme-responsive polymer assemblies constructed through covalent synthesis and supramolecular strategy. Chemical Communications, 2015, 51, 996-1003. | 2.2 | 76 | | 114 | Interfacial Fabrication of Functional Supramolecular Polymeric Networks for Photocatalysis. Langmuir, 2014, 30, 15462-15467. | 1.6 | 19 | | 115 | Supramolecular Polymerization Promoted and Controlled through Selfâ€Sorting. Angewandte Chemie - International Edition, 2014, 53, 5351-5355. | 7.2 | 200 | | 116 | Chemical Sciences: Contributions to Building a Sustainable Society and Sharing of International Responsibilities. ACS Symposium Series, 2014, , 101-139. | 0.5 | 1 | | 117 | Supramolecular polymer fabricated by click polymerization from supramonomer. Polymer Chemistry, 2014, 5, 323-326. | 1.9 | 74 | | 118 | Porphyrin-containing hyperbranched supramolecular polymers: enhancing<br><sup>1</sup> O <sub>2</sub> -generation efficiency by supramolecular polymerization. Polymer Chemistry, 2014, 5, 53-56. | 1.9 | 70 | | 119 | Asymmetric and Symmetric Bolaform Supra-Amphiphiles: Formation of Imine Bond Influenced by Aggregation. Langmuir, 2014, 30, 1531-1535. | 1.6 | 23 | | 120 | Fabricating covalently attached hyperbranched polymers by combining photochemistry with supramolecular polymerization. Polymer Chemistry, 2014, 5, 1471-1476. | 1.9 | 64 | | 121 | Controlling the self-assembly of cationic bolaamphiphiles: hydrotropic counteranions determine aggregated structures. Chemical Science, 2014, 5, 3267-3274. | 3.7 | 38 | | 122 | Redox-responsive thermal sensitivity based on a selenium-containing small molecule. Chemical Communications, 2014, 50, 2585. | 2.2 | 29 | | 123 | Supramolecular polymerization at the interface: layer-by-layer assembly driven by host-enhanced π–π interaction. Chemical Communications, 2014, 50, 11173-11176. | 2.2 | 25 | | 124 | Supramolecular polymerization of supramonomers: a way for fabricating supramolecular polymers. Polymer Chemistry, 2014, 5, 5895-5899. | 1.9 | 32 | | 125 | Supramolecular polymers bearing disulfide bonds. Polymer Chemistry, 2014, 5, 6439-6443. | 1.9 | 37 | | 126 | Two-Dimensional Folded Nanosheets Lead to an Unusual Circular Dichroism Effect in Aqueous Solution. Langmuir, 2014, 30, 6064-6070. | 1.6 | 3 | | # | Article | IF | CITATIONS | |-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------| | 127 | Supramolecular Chemistry at Interfaces: Host–Guest Interactions for Fabricating Multifunctional Biointerfaces. Accounts of Chemical Research, 2014, 47, 2106-2115. | 7.6 | 440 | | 128 | Supra-Amphiphiles: A New Bridge Between Colloidal Science and Supramolecular Chemistry. Langmuir, 2014, 30, 5989-6001. | 1.6 | 109 | | 129 | Water-soluble supramolecular hyperbranched polymers based on host-enhanced π–π interaction.<br>Polymer Chemistry, 2013, 4, 900. | 1.9 | 108 | | 130 | Cucurbit[7]uril as a "protective agent― controlling photochemistry and detecting 1-adamantanamine. Chemical Communications, 2013, 49, 3905. | 2.2 | 14 | | 131 | Rational Adjustment of Multicolor Emissions by Cucurbiturils-Based Host–Guest Chemistry and Photochemistry. Langmuir, 2013, 29, 12909-12914. | 1.6 | 48 | | 132 | 25th Anniversary Article: Reversible and Adaptive Functional Supramolecular Materials: "Noncovalent Interaction―Matters. Advanced Materials, 2013, 25, 5530-5548. | 11.1 | 275 | | 133 | Supramolecular Glycolipid Based on Host-Enhanced Charge Transfer Interaction. Langmuir, 2013, 29, 12375-12379. | 1.6 | 37 | | 134 | Macromolecular self-assembly and nanotechnology in China. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120305. | 1.6 | 10 | | 135 | Controlling the self-assembly of cationic bolaamphiphiles: counterion-directed transitions from 0D/1D to exclusively 2D planar structures. Chemical Science, 2013, 4, 4486. | 3.7 | 37 | | 136 | Water-soluble supramolecular polymers fabricated through specific interactions between cucurbit[8]uril and a tripeptide of Phe-Gly-Gly. Polymer Chemistry, 2013, 4, 5378. | 1.9 | 52 | | 137 | Supra-amphiphiles formed by complexation of azulene-based amphiphiles and pyrene in aqueous solution: from cylindrical micelles to disklike nanosheets. Chemical Communications, 2013, 49, 1808. | 2.2 | 25 | | 138 | Layer-by-Layer Assembly of Azulene-Based Supra-Amphiphiles: Reversible Encapsulation of Organic Molecules in Water by Charge-Transfer Interaction. Langmuir, 2013, 29, 6348-6353. | 1.6 | 13 | | 139 | Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Accounts of Chemical Research, 2013, 46, 1647-1658. | 7.6 | 489 | | 140 | Cucurbit[8]urilâ€Based Supramolecular Polymers. Chemistry - an Asian Journal, 2013, 8, 1626-1632. | 1.7 | 185 | | 141 | Cucurbit[8]uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination. Chemical Communications, 2013, 49, 5766. | 2.2 | 116 | | 142 | Thermosensitive micelles formed from a small-molecule amphiphile: switchable LCST and potential application in cloud point separation. Chemical Communications, 2013, 49, 5580. | 2.2 | 23 | | 143 | Visibleâ€Lightâ€Induced Disruption of Diselenideâ€Containing Layerâ€byâ€Layer Films: Toward Combination of Chemotherapy and Photodynamic Therapy. Small, 2013, 9, 3981-3986. | 5 <b>.</b> 2 | 42 | | 144 | Growth Mechanisms of 2D Organic Assemblies Generated from Dialkylated Melaminium Derivatives: The Length Difference of the Two Alkyl Chains That Matters. Langmuir, 2013, 29, 10959-10963. | 1.6 | 3 | | # | Article | IF | Citations | |-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 145 | A supramolecular approach to fabricate highly emissive smart materials. Scientific Reports, 2013, 3, 2372. | 1.6 | 80 | | 146 | Stretching Single Polymer Chains of Donor–Acceptor Foldamers: Toward the Quantitative Study on the Extent of Folding. Langmuir, 2013, 29, 14438-14443. | 1.6 | 13 | | 147 | Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy. Polymers, 2013, 5, 269-283. | 2.0 | 3 | | 148 | Supramolecular Photosensitizers with Enhanced Antibacterial Efficiency. Angewandte Chemie - International Edition, 2013, 52, 8285-8289. | 7.2 | 294 | | 149 | A New Dynamic Covalent Bond of SeN: Towards Controlled Selfâ€Assembly and Disassembly. Chemistry<br>- A European Journal, 2013, 19, 9506-9510. | 1.7 | 48 | | 150 | Multilayer Films with Nanocontainers: Redoxâ€Controlled Reversible Encapsulation of Guest Molecules. Chemistry - A European Journal, 2012, 18, 14968-14973. | 1.7 | 27 | | 151 | Supramolecular Polymerization at Low Monomer Concentrations: Enhancing Intermolecular Interactions and Suppressing Cyclization by Rational Molecular Design. Chemistry - A European Journal, 2012, 18, 15650-15654. | 1.7 | 72 | | 152 | Generation of 2D organic microsheets from protonated melamine derivatives: suppression of the self assembly of a particular dimension by introduction of alkyl chains. Chemical Science, 2012, 3, 3227. | 3.7 | 43 | | 153 | Fabrication of well-defined crystalline azacalixarene nanosheets assisted by Seâ <sup>-</sup> N non-covalent interactions. Chemical Communications, 2012, 48, 7495. | 2.2 | 43 | | 154 | Single-Molecule Force Spectroscopy of Selenium-Containing Amphiphilic Block Copolymer: Toward Disassembling the Polymer Micelles. Langmuir, 2012, 28, 9601-9605. | 1.6 | 45 | | 155 | Enzyme-Responsive Polymeric Supra-Amphiphiles Formed by the Complexation of Chitosan and ATP. Langmuir, 2012, 28, 14562-14566. | 1.6 | 60 | | 156 | Acetylcholinesterase Responsive Polymeric Supra-Amphiphiles for Controlled Self-Assembly and Disassembly. Langmuir, 2012, 28, 6032-6036. | 1.6 | 52 | | 157 | H-Shaped Supra-Amphiphiles Based on a Dynamic Covalent Bond. Langmuir, 2012, 28, 14567-14572. | 1.6 | 34 | | 158 | Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly. Soft Matter, 2012, 8, 1460-1466. | 1.2 | 132 | | 159 | Surface Molecular Imprinting in Layer-by-Layer films on Silica Particles. Langmuir, 2012, 28, 4267-4273. | 1.6 | 41 | | 160 | pH and enzymatic double-stimuli responsive multi-compartment micelles from supra-amphiphilic polymers. Polymer Chemistry, 2012, 3, 3056. | 1.9 | 40 | | 161 | Bolaamphiphiles Bearing Bipyridine as Mesogenic Core: Rational Exploitation of Molecular Architectures for Controlled Self-Assembly. Langmuir, 2012, 28, 5023-5030. | 1.6 | 24 | | 162 | Unexpected Temperature-Dependent Single Chain Mechanics of Poly( <i>N</i> -isopropyl-acrylamide) in Water. Langmuir, 2012, 28, 5151-5157. | 1.6 | 48 | | # | Article | IF | Citations | |-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------| | 163 | Unconventional Layerâ€byâ€Layer Assembly: Surface Molecular Imprinting and Its Applications. Small, 2012, 8, 517-523. | 5.2 | 52 | | 164 | TRR 61, The "Interplay―between Mýnster and Beijing for Promoting Research on Multilevel Molecular Assemblies: Structure, Dynamics, and Functions. Small, 2012, 8, 479-480. | <b>5.2</b> | 0 | | 165 | Amphiphilic Building Blocks for Self-Assembly: From Amphiphiles to Supra-amphiphiles. Accounts of Chemical Research, 2012, 45, 608-618. | 7.6 | 652 | | 166 | Molecular Dynamics Simulations of the Supramolecular Assembly between an Azobenzene-Containing Surfactant and α-Cyclodextrin: Role of Photoisomerization. Journal of Physical Chemistry B, 2012, 116, 823-832. | 1.2 | 43 | | 167 | From Bolaâ€amphiphiles to Supraâ€amphiphiles: The Transformation from Twoâ€Dimensional Nanosheets into Oneâ€Dimensional Nanofibers with Tunableâ€Packing Fashion of nâ€Type Chromophores. Chemistry - A European Journal, 2012, 18, 8622-8628. | 1.7 | 57 | | 168 | Layer-by-Layer Assembly: From Conventional to Unconventional Methods. , 2012, , 43-67. | | 2 | | 169 | Fullyâ€Branched Hyperbranched Polymers with a Diselenide Core as Glutathione Peroxidase Mimics.<br>Macromolecular Rapid Communications, 2012, 33, 798-804. | 2.0 | 38 | | 170 | Characterization of supramolecular polymers. Chemical Society Reviews, 2012, 41, 5922. | 18.7 | 298 | | 171 | Self-Assembly of Supra-amphiphiles Based on Dual Charge-Transfer Interactions: From Nanosheets to Nanofibers. Langmuir, 2012, 28, 10697-10702. | 1.6 | 68 | | 172 | Bolaform Supramolecular Amphiphiles as a Novel Concept for the Buildup of Surface-Imprinted Films. Langmuir, 2011, 27, 10370-10375. | 1.6 | 28 | | 173 | Preface to the Supramolecular Chemistry at Interfaces Special Issue. Langmuir, 2011, 27, 1245-1245. | 1.6 | 11 | | 174 | Extracting a Single Polyethylene Oxide Chain from a Single Crystal by a Combination of Atomic Force Microscopy Imaging and Single-Molecule Force Spectroscopy: Toward the Investigation of Molecular Interactions in Their Condensed States. Journal of the American Chemical Society, 2011, 133, 3226-3229. | 6.6 | 122 | | 175 | Radiation-Sensitive Diselenide Block Co-polymer Micellar Aggregates: Toward the Combination of Radiotherapy and Chemotherapy. Langmuir, 2011, 27, 5874-5878. | 1.6 | 152 | | 176 | UV-Responsive Polymeric Superamphiphile Based on a Complex of Malachite Green Derivative and a Double Hydrophilic Block Copolymer. Langmuir, 2011, 27, 14108-14111. | 1.6 | 39 | | 177 | Bolaform Superamphiphile Based on a Dynamic Covalent Bond and Its Self-Assembly in Water.<br>Langmuir, 2011, 27, 12375-12380. | 1.6 | 50 | | 178 | Supramolecular amphiphiles. Chemical Society Reviews, 2011, 40, 94-101. | 18.7 | 652 | | 179 | Host–guest chemistry at interface for photoswitchable bioelectrocatalysis. Chemical Communications, 2011, 47, 5994. | 2.2 | 36 | | 180 | Superamphiphiles as Building Blocks for Supramolecular Engineering: Towards Functional Materials and Surfaces. Small, 2011, 7, 1379-1383. | 5.2 | 63 | | # | Article | IF | CITATIONS | |-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 181 | Chemistry and Physics at Play in Materials Science: the Centennial Celebration of Tsinghua University. Advanced Materials, 2011, 23, 1042-1043. | 11.1 | 1 | | 182 | Superamphiphiles Based on Directional Chargeâ€Transfer Interactions: From Supramolecular Engineering to Wellâ€Defined Nanostructures. Angewandte Chemie - International Edition, 2011, 50, 4952-4956. | 7.2 | 138 | | 183 | A pHâ€Responsive Superamphiphile Based on Dynamic Covalent Bonds. Chemistry - A European Journal, 2011, 17, 3322-3325. | 1.7 | 140 | | 184 | Hostâ€Enhanced π–π Interaction for Waterâ€Soluble Supramolecular Polymerization. Chemistry - A European Journal, 2011, 17, 9930-9935. | 1.7 | 111 | | 185 | Photoresponsive Supramolecular Amphiphiles for Controlled Selfâ€Assembly of Nanofibers and Vesicles. Advanced Materials, 2010, 22, 2553-2555. | 11.1 | 109 | | 186 | Waterâ€Soluble Supramolecular Polymerization Driven by Multiple Hostâ€Stabilized Chargeâ€Transfer Interactions. Angewandte Chemie - International Edition, 2010, 49, 6576-6579. | 7.2 | 380 | | 187 | An Enzymeâ€Responsive Polymeric Superamphiphile. Angewandte Chemie - International Edition, 2010, 49, 8612-8615. | 7.2 | 195 | | 188 | Superamphiphiles Based on Charge Transfer Complex: Controllable Hierarchical Self-Assembly of Nanoribbons. Langmuir, 2010, 26, 14509-14511. | 1.6 | 41 | | 189 | Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. Journal of the American Chemical Society, 2010, 132, 442-443. | 6.6 | 643 | | 190 | Oxidation-Responsive Micelles Based on a Selenium-Containing Polymeric Superamphiphile. Langmuir, 2010, 26, 14414-14418. | 1.6 | 133 | | 191 | Selenium-containing block copolymers and their oxidation-responsive aggregates. Polymer Chemistry, 2010, 1, 1609. | 1.9 | 181 | | 192 | Biostructure-like Surfaces with Thermally Responsive Wettability Prepared by Temperature-Induced Phase Separation Micromolding. Langmuir, 2010, 26, 9673-9676. | 1.6 | 55 | | 193 | Mechanism of Surface Molecular Imprinting in Polyelectrolyte Multilayers. Langmuir, 2010, 26, 10122-10128. | 1.6 | 34 | | 194 | Study on Intercalations between Double-Stranded DNA and Pyrene by Single-Molecule Force Spectroscopy: Toward the Detection of Mismatch in DNA. Langmuir, 2010, 26, 13773-13777. | 1.6 | 25 | | 195 | Selectively Erasable Multilayer Thin Film by Photoinduced Disassembly. Langmuir, 2010, 26, 9736-9741. | 1.6 | 16 | | 196 | Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles: A Facile Approach toward Supramolecular Polymer Nanocontainers. Langmuir, 2010, 26, 709-715. | 1.6 | 196 | | 197 | AFM Force Mapping for Characterizing Patterns of Electrostatic Charges on SiO2 Electrets. Langmuir, 2010, 26, 11958-11962. | 1.6 | 11 | | 198 | Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials, 2010, 22, 2213-2218. | 3.2 | 712 | | # | Article | IF | Citations | |-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 199 | Combining Hostâ <sup>^</sup> Guest Systems with Nonfouling Material for the Fabrication of a Biosurface: Toward Nearly Complete and Reversible Resistance of Cytochrome c. Langmuir, 2010, 26, 12515-12517. | 1.6 | 22 | | 200 | Force Required to Disassemble Block Copolymer Micelles in Water. Langmuir, 2010, 26, 9183-9186. | 1.6 | 12 | | 201 | Tuning the Amphiphilicity of Building Blocks: Controlled Selfâ€Assembly and Disassembly for Functional Supramolecular Materials. Advanced Materials, 2009, 21, 2849-2864. | 11.1 | 423 | | 202 | Fabrication of Reactivated Biointerface for Dualâ€Controlled Reversible Immobilization of Cytochrome c. Advanced Materials, 2009, 21, 4362-4365. | 11.1 | 64 | | 203 | Supramolecular Amphiphiles Based on a Waterâ€6oluble Chargeâ€Transfer Complex: Fabrication of Ultralong Nanofibers with Tunable Straightness. Angewandte Chemie - International Edition, 2009, 48, 8962-8965. | 7.2 | 164 | | 204 | Metalâ^'Ligand Coordination-Induced Self-Assembly of Bolaamphiphiles Bearing Bipyrimidine. Langmuir, 2009, 25, 13306-13310. | 1.6 | 25 | | 205 | Single-Molecule Study on Intermolecular Interaction between C60and Porphyrin Derivatives: Toward Understanding the Strength of the Multivalency. Langmuir, 2009, 25, 6627-6632. | 1.6 | 43 | | 206 | Facile Reversible UV-Controlled and Fast Transition from Emulsion to Gel by Using a Photoresponsive Polymer with a Malachite Green Group. Langmuir, 2009, 25, 10134-10138. | 1.6 | 29 | | 207 | Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO <sub>2</sub> Heterostructures. Journal of Physical Chemistry C, 2009, 113, 7371-7378. | 1.5 | 633 | | 208 | Full View of Single-Molecule Force Spectroscopy of Polyaniline in Oxidized, Reduced, and Doped States. Langmuir, 2009, 25, 10002-10006. | 1.6 | 26 | | 209 | Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. Chemical Communications, 2009, , 5380. | 2.2 | 90 | | 210 | SURFACE MOLECULAR ENGINEERING OF POLYMER MULTILAYER FILMS. Acta Polymerica Sinica, 2009, 007, 905-912. | 0.0 | 4 | | 211 | DIRECT MEASUREMENTS OF INTERMOLECULAR INTERACTIONS. Acta Polymerica Sinica, 2009, 009, 973-979. | 0.0 | 10 | | 212 | Controlled Selfâ€Assembly Manipulated by Chargeâ€Transfer Interactions: From Tubes to Vesicles. Angewandte Chemie - International Edition, 2008, 47, 9049-9052. | 7.2 | 198 | | 213 | Selfâ€Assembled Monolayers of a Malachite Green Derivative: Surfaces with pH―and UVâ€Responsive Wetting Properties. Advanced Materials, 2008, 20, 1972-1977. | 11.1 | 80 | | 214 | Force spectroscopy of polymers: Studying on intramolecular and intermolecular interactions in single molecular level. Polymer, 2008, 49, 3353-3361. | 1.8 | 59 | | 215 | Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry, 2008, 18, 621-633. | 6.7 | 1,560 | | 216 | Surface-Imprinted Nanostructured Layer-by-Layer Film for Molecular Recognition of Theophylline Derivatives. Langmuir, 2008, 24, 11988-11994. | 1.6 | 63 | | # | Article | IF | CITATIONS | |-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 217 | Light-Controlled Single-Walled Carbon Nanotube Dispersions in Aqueous Solution. Langmuir, 2008, 24, 9233-9236. | 1.6 | 61 | | 218 | Tuning surface wettability through photocontrolled reversible molecular shuttle. Chemical Communications, 2008, , 5710. | 2.2 | 172 | | 219 | Interaction between Dendrons Directly Studied by Single-Molecule Force Spectroscopy. Langmuir, 2008, 24, 1318-1323. | 1.6 | 18 | | 220 | Self-Organization of Bolaamphiphile Bearing Biphenyl Mesogen and Aspartic-Acid Headgroups. Journal of Physical Chemistry C, 2008, 112, 3308-3313. | 1.5 | 14 | | 221 | Layer-by-layer assembly: from conventional to unconventional methods. Chemical Communications, 2007, , 1395-1405. | 2.2 | 519 | | 222 | Self-Organization of Polymerizable Bolaamphiphiles Bearing Diacetylene Mesogenic Group. Langmuir, 2007, 23, 5936-5941. | 1.6 | 21 | | 223 | Reversible Disulfide Cross-Linking in Layer-by-Layer Films:Â Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release. Langmuir, 2007, 23, 6377-6384. | 1.6 | 49 | | 224 | Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings. Chemistry of Materials, 2007, 19, 14-17. | 3.2 | 93 | | 225 | Reversible Self-Organization of a UV-Responsive PEG-Terminated Malachite Green Derivative:Â Vesicle Formation and Photoinduced Disassembly. Langmuir, 2007, 23, 4029-4034. | 1.6 | 78 | | 226 | Direct Measurements of the Interaction between Pyrene and Graphite in Aqueous Media by Single Molecule Force Spectroscopy: Understanding the πⰒπ Interactions. Langmuir, 2007, 23, 7911-7915. | 1.6 | 124 | | 227 | Combining Hydrogen-Bonding Complexation in Solution and Hydrogen-Bonding-Directed Layer-by-Layer Assembly for the Controlled Loading of a Small Organic Molecule into Multilayer Films. Langmuir, 2007, 23, 11631-11636. | 1.6 | 53 | | 228 | Intercalation Interactions between dsDNA and Acridine Studied by Single Molecule Force Spectroscopy. Langmuir, 2007, 23, 9140-9142. | 1.6 | 38 | | 229 | Azobenzene-Containing Supramolecular Side-Chain Polymer Films for Laser-Induced Surface Relief Gratings. Chemistry of Materials, 2007, 19, 3877-3881. | 3.2 | 105 | | 230 | Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with α-Cyclodextrin. Angewandte Chemie - International Edition, 2007, 46, 2823-2826. | 7.2 | 484 | | 231 | Closed Mechanoelectrochemical Cycles of Individual Singleâ€Chain Macromolecular Motors by AFM.<br>Angewandte Chemie - International Edition, 2007, 46, 8400-8404. | 7.2 | 56 | | 232 | Hydrogen bonded layer-by-layer assembly of poly(2-vinylpyridine) and poly(acrylic acid): Influence of molecular weight on the formation of microporous film by post-base treatment. European Polymer Journal, 2007, 43, 2784-2791. | 2.6 | 32 | | 233 | The unwinding of surfactant-induced helical structure of carboxymethyl amylose by single molecule force spectroscopy. Polymer, 2007, 48, 2030-2034. | 1.8 | 7 | | 234 | Surface Gradient Material:Â From Superhydrophobicity to Superhydrophilicity. Langmuir, 2006, 22, 4483-4486. | 1.6 | 154 | | # | Article | IF | Citations | |-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------| | 235 | Hyperbranched polyselenides as glutathione peroxidase mimics. Chemical Communications, 2006, , 796. | 2.2 | 71 | | 236 | Block Copolymer Micelles as Matrixes for Incorporating Diselenide Compounds:Â A Model System for a Water-Soluble Glutathione Peroxidase Mimic Fine-Tuned by Ionic Strength. Langmuir, 2006, 22, 5552-5555. | 1.6 | 44 | | 237 | Force Spectroscopy of Single-Chain Polysaccharides: Â Force-Induced Conformational Transition of Amylose Disappears under Environment of Micelle Solution. Macromolecules, 2006, 39, 3480-3483. | 2.2 | 27 | | 238 | Investigation into pH-Responsive Self-Assembled Monolayers of Acylated Anthranilate-Terminated Alkanethiol on a Gold Surface. Langmuir, 2006, 22, 3715-3720. | 1.6 | 23 | | 239 | Hydrogen-bonding-directed layer-by-layer polymer films: Substrate effect on the microporous morphology variation. European Polymer Journal, 2006, 42, 900-907. | 2.6 | 23 | | 240 | Toward understanding the effect of substitutes and solvents on entropic and enthalpic elasticity of single dendronized copolymers. Polymer, 2006, 47, 2499-2504. | 1.8 | 17 | | 241 | Application of MLPG in Large Deformation Analysis. Acta Mechanica Sinica/Lixue Xuebao, 2006, 22, 331-340. | 1.5 | 16 | | 242 | Stabilizing interfacial micellar aggregates by enhanced supramolecular interaction or surface polymerization. Pure and Applied Chemistry, 2006, 78, 1015-1023. | 0.9 | 9 | | 243 | Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructures:<br>Toward Fabrication of Superhydrophobic/Superhydrophilic Surfaces and pH-Responsive Surfaces.<br>Langmuir, 2005, 21, 1986-1990. | 1.6 | 178 | | 244 | The Introduction of π-π Stacking Moieties for Fabricating Stable Micellar Structure: Formation and Dynamics of Disklike Micelles. Angewandte Chemie - International Edition, 2005, 44, 4731-4735. | 7.2 | 103 | | 245 | A Convenient A2 + B3 Approach to Hyperbranched Poly(arylene oxindole)s. Macromolecular Rapid Communications, 2005, 26, 1458-1463. | 2.0 | 36 | | 246 | Alternating deposition multilayer films of dendrimers/poly(4-vinylpyridine) based on hydrogen bonding. Science Bulletin, 2005, 50, 374-376. | 1.7 | 0 | | 247 | Single-Chain Mechanical Property of Poly(N-vinyl-2-pyrrolidone) and Interaction with Small Molecules. Journal of Physical Chemistry B, 2005, 109, 14807-14812. | 1.2 | 44 | | 248 | Force Spectroscopy on Dendronized Poly(p-phenylene)s: Revealing the Chain Elasticity and the Interfacial Interaction. Macromolecules, 2005, 38, 861-866. | 2.2 | 24 | | 249 | Force spectroscopy of polymers: Beyond single chain mechanics. Current Opinion in Solid State and Materials Science, 2005, 9, 140-148. | 5 <b>.</b> 6 | 36 | | 250 | Roselike Microstructures Formed by Direct In Situ Hydrothermal Synthesis: From Superhydrophilicity to Superhydrophobicity. Chemistry of Materials, 2005, 17, 6177-6180. | <b>3.</b> 2 | 97 | | 251 | Two- and Three-Dimensional Molecular Organization of Schiff-Base Derivatives. ChemPhysChem, 2004, 5, 202-208. | 1.0 | 8 | | 252 | Hydrogen-Bonding-Directed Layer-by-Layer Films:Â Effect of Electrostatic Interaction on the Microporous Morphology Variation. Langmuir, 2004, 20, 11828-11832. | 1.6 | 44 | | # | Article | IF | Citations | |-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 253 | Single-Chain Elasticity of Poly(ferrocenyldimethylsilane) and Poly(ferrocenylmethylphenylsilane). Macromolecules, 2004, 37, 1839-1842. | 2.2 | 45 | | 254 | Single Molecule Force Spectroscopy on Polyelectrolytes:Â Effect of Spacer on Adhesion Force and Linear Charge Density on Rigidity. Macromolecules, 2004, 37, 946-953. | 2.2 | 67 | | 255 | In Situ Gamma Ray-Initiated Polymerization To Stabilize Surface Micelles. Journal of the American Chemical Society, 2004, 126, 6572-6573. | 6.6 | 28 | | 256 | Highly Efficient Dendrimer-Based Mimic of Glutathione Peroxidase. Journal of the American Chemical Society, 2004, 126, 10556-10557. | 6.6 | 169 | | 257 | Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface. Journal of the American Chemical Society, 2004, 126, 3064-3065. | 6.6 | 627 | | 258 | Investigation of Spontaneous Polycondensation of N-(O, O-Ditetradecyl) Phosphorylalanine in Highly Ordered Films by Ftir Spectroscopy. Journal of Chemical Research, 2004, 2004, 143-144. | 0.6 | 2 | | 259 | Supramolecular science: A new way to understand the matter world. Science Bulletin, 2003, 48, 1517-1518. | 1.7 | 2 | | 260 | Stabilizing Bolaform Amphiphile Interfacial Assemblies by Introducing Mesogenic Groups. Chemistry - A European Journal, 2003, 9, 1876-1880. | 1.7 | 24 | | 261 | Single molecule mechanochemistry of macromolecules. Progress in Polymer Science, 2003, 28, 1271-1295. | 11.8 | 254 | | 262 | Desorption Force per Polystyrene Segment in Water. Macromolecules, 2003, 36, 3779-3782. | 2.2 | 34 | | 263 | Diversified Pattern Formation in Self-Assembly of Bolaform Amphiphiles Bearing Mesogenic Groups at an Interface. Langmuir, 2003, 19, 8122-8124. | 1.6 | 5 | | 264 | Simple Method to Isolate Single Polymer Chains for the Direct Measurement of the Desorption Force. Nano Letters, 2003, 3, 245-248. | 4.5 | 59 | | 265 | Single-Molecule Force Spectroscopy on Curdlan: Unwinding Helical Structures and Random Coils.<br>Nano Letters, 2003, 3, 1119-1124. | 4.5 | 55 | | 266 | Supramolecular research by single molecule force spectroscopy. Macromolecular Symposia, 2003, 195, 109-114. | 0.4 | 4 | | 267 | Desorption Force of Poly(4-vinylpyridine) Layer Assemblies from Amino Groups Modified Substrates. Journal of Physical Chemistry B, 2002, 106, 12705-12708. | 1.2 | 24 | | 268 | Oxygen Bridge Inhibits Conformational Transition of 1,4-Linked α-d-Galactose Detected by Single-Molecule Atomic Force Microscopy. Macromolecules, 2002, 35, 871-876. | 2.2 | 31 | | 269 | Hydrogen-Bonding-Directed Layer-by-Layer Multilayer Assembly: Reconformation Yielding Microporous Films. Macromolecules, 2002, 35, 9451-9458. | 2.2 | 141 | | 270 | Force Spectroscopy Study on Poly(acrylamide) Derivatives: Effects of Substitutes and Buffers on Single-Chain Elasticity. Nano Letters, 2002, 2, 1169-1172. | 4.5 | 52 | | # | Article | IF | Citations | |-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 271 | Confined supramolecular nanostructures of mesogen-bearing amphiphilesElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b2/b201444k/. Chemical Communications, 2002, , 1008-1009. | 2.2 | 33 | | 272 | Self-assembled monolayers of new dendron-thiols: manipulation of the patterned surface and wetting properties. Chemical Communications, 2001, , 1906-1907. | 2.2 | 24 | | 273 | Study on Polymer Micelles of Hydrophobically Modified Ethyl Hydroxyethyl Cellulose Using Single-Molecule Force Spectroscopy. Langmuir, 2001, 17, 4799-4808. | 1.6 | 21 | | 274 | Ex Situ SFM Study of 2-D Aggregate Geometry of Azobenzene Containing Bolaform Amphiphiles after Adsorption at the Mica/Aqueous Solution Interface. Langmuir, 2001, 17, 3682-3688. | 1.6 | 25 | | 275 | Stable Entrapment of Small Molecules Bearing Sulfonate Groups in Multilayer Assemblies. Langmuir, 2001, 17, 4035-4041. | 1.6 | 21 | | 276 | Interfacial molecular assembly and surface patterning. Science Bulletin, 2001, 46, 1152-1155. | 1.7 | 2 | | 277 | Single-Molecule Force Spectroscopy on Carrageenan by Means of AFM. Macromolecular Rapid Communications, 2001, 22, 1163. | 2.0 | 27 | | 278 | Ionic Self-Assembly of Glucose Oxidase with Polycation Bearing Os Complex. Macromolecular Chemistry and Physics, 2001, 202, 111-116. | 1.1 | 28 | | 279 | Polymeric nanostructured composite films. Pure and Applied Chemistry, 2000, 72, 147-155. | 0.9 | 5 | | 280 | Nano-size stripes of self-assembled bolaform amphiphiles. Chemical Communications, 2000, , 1273-1274. | 2.2 | 23 | | 281 | Covalently Attached Multilayer Assemblies by Sequential Adsorption of Polycationic Diazo-Resins and Polyanionic Poly(acrylic acid). Langmuir, 2000, 16, 4620-4624. | 1.6 | 128 | | 282 | Hydrogen Bonding Governs the Elastic Properties of Poly(vinyl alcohol) in Water:Â Single-Molecule Force Spectroscopic Studies of PVA by AFM. Macromolecules, 2000, 33, 465-469. | 2.2 | 151 | | 283 | Single Polymer Chain Elongation of Poly(N-isopropylacrylamide) and Poly(acrylamide) by Atomic Force Microscopy. Journal of Physical Chemistry B, 2000, 104, 10258-10264. | 1.2 | 112 | | 284 | Single-molecule force spectroscopy on polysaccharides by AFM $\hat{a}\in$ nanomechanical fingerprint of $\hat{1}$ ±-(1,4)-linked polysaccharides. Chemical Physics Letters, 1999, 305, 197-201. | 1.2 | 131 | | 285 | Self-Assembled Ultrathin Films: From Layered Nanoarchitectures to Functional Assemblies. Advanced Materials, 1999, 11, 1139-1143. | 11.1 | 148 | | 286 | Single-Molecule Force Spectroscopy on Poly(acrylic acid) by AFM. Langmuir, 1999, 15, 2120-2124. | 1.6 | 100 | | 287 | Investigation into an Alternating Multilayer Film of Poly(4-Vinylpyridine) and Poly(acrylic acid) Based on Hydrogen Bonding. Langmuir, 1999, 15, 1360-1363. | 1.6 | 121 | | 288 | A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles. Advanced Materials, 1998, 10, 529-532. | 11.1 | 96 | | # | Article | IF | Citations | |-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 289 | Single molecule force spectroscopy on poly(vinyl alcohol) by atomic force microscopy. Macromolecular Rapid Communications, 1998, 19, 609-612. | 2.0 | 48 | | 290 | Synthesis and properties of polyester dendrimers bearing carbazole groups in their periphery. Macromolecular Chemistry and Physics, 1998, 199, 1323-1327. | 1.1 | 19 | | 291 | A new kind of azo polymeric LB film for reversible optical storage. Polymer Bulletin, 1998, 40, 735-740. | 1.7 | 5 | | 292 | Atomic force microscopic (AFM) study on a self-organizing polymer film. Polymer Bulletin, 1998, 41, 695-699. | 1.7 | 7 | | 293 | A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S<br>Nanoparticles. , 1998, 10, 529. | | 4 | | 294 | Formation of supramolecular aggregates by hydrogen bonding based on bispyrimidine and bisbarbituric acid. Macromolecular Chemistry and Physics, 1997, 198, 573-579. | 1.1 | 29 | | 295 | A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromolecular Rapid Communications, 1997, 18, 509-514. | 2.0 | 377 | | 296 | Fabrication of ultrathin film containing bienzyme of glucose oxidase and glucoamylase based on electrostatic interaction and its potential application as a maltose sensor. Macromolecular Chemistry and Physics, 1996, 197, 147-153. | 1.1 | 97 | | 297 | Effects of pH on the supramolecular structure of polymeric molecular deposition films.<br>Macromolecular Chemistry and Physics, 1996, 197, 509-515. | 1.1 | 18 | | 298 | A new complex polymeric Langmuir-Blodgett film of fullerene. Macromolecular Rapid Communications, 1994, 15, 373-377. | 2.0 | 16 | | 299 | A new kind of immobilized enzyme multilayer based on cationic and anionic interaction.<br>Macromolecular Rapid Communications, 1994, 15, 405-409. | 2.0 | 107 | | 300 | Build-up of a new type of ultrathin film of porphyrin and phthalocyanine based on cationic and anionic electrostatic attraction. Journal of the Chemical Society Chemical Communications, 1994, , 1055. | 2.0 | 92 | | 301 | A monolayer of Pbl2nanoparticles adsorbed on MD–LB film. Journal of the Chemical Society Chemical Communications, 1994, , 2229-2230. | 2.0 | 40 | | 302 | A study of microgel star amphiphile monolayers. Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 157-161. | 0.6 | 4 | | 303 | Layered Nanoarchitectures Based on Electro- and Photo-Active Building Blocks. , 0, , 301-330. | | 2 | | 304 | Rich-colour mechanochromism of a cyanostilbene derivative with chiral self-assembly. New Journal of Chemistry, $0$ , , . | 1.4 | 3 |