Xi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4705096/publications.pdf Version: 2024-02-01

		5896	7348
304	27,166	81	152
papers	citations	h-index	g-index
324	324	324	21779
all docs	docs citations	times ranked	citing authors

YI 7HANC

#	Article	IF	CITATIONS
1	Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry, 2008, 18, 621-633.	6.7	1,560
2	Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. Chemical Reviews, 2015, 115, 7196-7239.	47.7	1,065
3	Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials, 2010, 22, 2213-2218.	6.7	712
4	Supramolecular amphiphiles. Chemical Society Reviews, 2011, 40, 94-101.	38.1	652
5	Amphiphilic Building Blocks for Self-Assembly: From Amphiphiles to Supra-amphiphiles. Accounts of Chemical Research, 2012, 45, 608-618.	15.6	652
6	Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. Journal of the American Chemical Society, 2010, 132, 442-443.	13.7	643
7	Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO ₂ Heterostructures. Journal of Physical Chemistry C, 2009, 113, 7371-7378.	3.1	633
8	Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:  Toward Super-Hydrophobic Surface. Journal of the American Chemical Society, 2004, 126, 3064-3065.	13.7	627
9	Layer-by-layer assembly: from conventional to unconventional methods. Chemical Communications, 2007, , 1395-1405.	4.1	519
10	Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Accounts of Chemical Research, 2013, 46, 1647-1658.	15.6	489
11	Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with α-Cyclodextrin. Angewandte Chemie - International Edition, 2007, 46, 2823-2826.	13.8	484
12	Supramolecular Chemistry at Interfaces: Host–Guest Interactions for Fabricating Multifunctional Biointerfaces. Accounts of Chemical Research, 2014, 47, 2106-2115.	15.6	440
13	Tuning the Amphiphilicity of Building Blocks: Controlled Selfâ€Assembly and Disassembly for Functional Supramolecular Materials. Advanced Materials, 2009, 21, 2849-2864.	21.0	423
14	Waterâ€Soluble Supramolecular Polymerization Driven by Multiple Hostâ€Stabilized Chargeâ€Transfer Interactions. Angewandte Chemie - International Edition, 2010, 49, 6576-6579.	13.8	380
15	Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. Advanced Materials, 2019, 31, e1805092.	21.0	380
16	A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromolecular Rapid Communications, 1997, 18, 509-514.	3.9	377
17	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	8.2	336
18	Characterization of supramolecular polymers. Chemical Society Reviews, 2012, 41, 5922.	38.1	298

#	Article	lF	CITATIONS
19	Supramolecular Photosensitizers with Enhanced Antibacterial Efficiency. Angewandte Chemie - International Edition, 2013, 52, 8285-8289.	13.8	294
20	25th Anniversary Article: Reversible and Adaptive Functional Supramolecular Materials: "Noncovalent Interaction―Matters. Advanced Materials, 2013, 25, 5530-5548.	21.0	275
21	Single molecule mechanochemistry of macromolecules. Progress in Polymer Science, 2003, 28, 1271-1295.	24.7	254
22	Supramolecular Radical Anions Triggered by Bacteria Inâ€Situ for Selective Photothermal Therapy. Angewandte Chemie - International Edition, 2017, 56, 16239-16242.	13.8	235
23	Supramolecular Polymerization Promoted and Controlled through Selfâ€Sorting. Angewandte Chemie - International Edition, 2014, 53, 5351-5355.	13.8	200
24	Controlled Selfâ€Assembly Manipulated by Chargeâ€Transfer Interactions: From Tubes to Vesicles. Angewandte Chemie - International Edition, 2008, 47, 9049-9052.	13.8	198
25	Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles: A Facile Approach toward Supramolecular Polymer Nanocontainers. Langmuir, 2010, 26, 709-715.	3.5	196
26	An Enzymeâ€Responsive Polymeric Superamphiphile. Angewandte Chemie - International Edition, 2010, 49, 8612-8615.	13.8	195
27	Antimicrobial cationic polymers: from structural design to functional control. Polymer Journal, 2018, 50, 33-44.	2.7	187
28	Cucurbit[8]urilâ€Based Supramolecular Polymers. Chemistry - an Asian Journal, 2013, 8, 1626-1632.	3.3	185
29	Selenium-containing block copolymers and their oxidation-responsive aggregates. Polymer Chemistry, 2010, 1, 1609.	3.9	181
30	Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructures: Toward Fabrication of Superhydrophobic/Superhydrophilic Surfaces and pH-Responsive Surfaces. Langmuir, 2005, 21, 1986-1990.	3.5	178
31	Supramolecular free radicals: near-infrared organic materials with enhanced photothermal conversion. Chemical Science, 2015, 6, 3975-3980.	7.4	174
32	Tough and Multiâ€Recyclable Crossâ€Linked Supramolecular Polyureas via Incorporating Noncovalent Bonds into Mainâ€Chains. Advanced Materials, 2020, 32, e2000096.	21.0	174
33	Tuning surface wettability through photocontrolled reversible molecular shuttle. Chemical Communications, 2008, , 5710.	4.1	172
34	Highly Efficient Dendrimer-Based Mimic of Glutathione Peroxidase. Journal of the American Chemical Society, 2004, 126, 10556-10557.	13.7	169
35	A Supramolecular Radical Dimer: Highâ€Efficiency NIRâ€I Photothermal Conversion and Therapy. Angewandte Chemie - International Edition, 2019, 58, 15526-15531.	13.8	168
36	Supramolecular Amphiphiles Based on a Waterâ€6oluble Chargeâ€Transfer Complex: Fabrication of Ultralong Nanofibers with Tunable Straightness. Angewandte Chemie - International Edition, 2009, 48, 8962-8965.	13.8	164

#	Article	IF	CITATIONS
37	Surface Gradient Material:Â From Superhydrophobicity to Superhydrophilicity. Langmuir, 2006, 22, 4483-4486.	3.5	154
38	Radiation-Sensitive Diselenide Block Co-polymer Micellar Aggregates: Toward the Combination of Radiotherapy and Chemotherapy. Langmuir, 2011, 27, 5874-5878.	3.5	152
39	Hydrogen Bonding Governs the Elastic Properties of Poly(vinyl alcohol) in Water:Â Single-Molecule Force Spectroscopic Studies of PVA by AFM. Macromolecules, 2000, 33, 465-469.	4.8	151
40	Self-Assembled Ultrathin Films: From Layered Nanoarchitectures to Functional Assemblies. Advanced Materials, 1999, 11, 1139-1143.	21.0	148
41	Supramolecular Chemotherapy: Cooperative Enhancement of Antitumor Activity by Combining Controlled Release of Oxaliplatin and Consuming of Spermine by Cucurbit[7]uril. ACS Applied Materials & Interfaces, 2017, 9, 8602-8608.	8.0	148
42	Hydrogen-Bonding-Directed Layer-by-Layer Multilayer Assembly:  Reconformation Yielding Microporous Films. Macromolecules, 2002, 35, 9451-9458.	4.8	141
43	A pHâ€Responsive Superamphiphile Based on Dynamic Covalent Bonds. Chemistry - A European Journal, 2011, 17, 3322-3325.	3.3	140
44	Superamphiphiles Based on Directional Chargeâ€Transfer Interactions: From Supramolecular Engineering to Wellâ€Defined Nanostructures. Angewandte Chemie - International Edition, 2011, 50, 4952-4956.	13.8	138
45	Supramolecular Hydrogels Fabricated from Supramonomers: A Novel Wound Dressing Material. ACS Applied Materials & Interfaces, 2017, 9, 11368-11372.	8.0	135
46	Supramolecular polymer chemistry: From structural control to functional assembly. Progress in Polymer Science, 2020, 100, 101167.	24.7	135
47	Oxidation-Responsive Micelles Based on a Selenium-Containing Polymeric Superamphiphile. Langmuir, 2010, 26, 14414-14418.	3.5	133
48	Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly. Soft Matter, 2012, 8, 1460-1466.	2.7	132
49	Single-molecule force spectroscopy on polysaccharides by AFM – nanomechanical fingerprint of α-(1,4)-linked polysaccharides. Chemical Physics Letters, 1999, 305, 197-201.	2.6	131
50	Supramolecular Porphyrin Photosensitizers: Controllable Disguise and Photoinduced Activation of Antibacterial Behavior. ACS Applied Materials & 2017, 9, 13950-13957.	8.0	129
51	Covalently Attached Multilayer Assemblies by Sequential Adsorption of Polycationic Diazo-Resins and Polyanionic Poly(acrylic acid). Langmuir, 2000, 16, 4620-4624.	3.5	128
52	Tuning the stability of organic radicals: from covalent approaches to non-covalent approaches. Chemical Science, 2020, 11, 1192-1204.	7.4	125
53	Direct Measurements of the Interaction between Pyrene and Graphite in Aqueous Media by Single Molecule Force Spectroscopy:  Understanding the Ï€â^'Ï€ Interactions. Langmuir, 2007, 23, 7911-7915.	3.5	124
54	Extracting a Single Polyethylene Oxide Chain from a Single Crystal by a Combination of Atomic Force Microscopy Imaging and Single-Molecule Force Spectroscopy: Toward the Investigation of Molecular Interactions in Their Condensed States. Journal of the American Chemical Society, 2011, 133, 3226-3229.	13.7	122

#	Article	IF	CITATIONS
55	In Situ Hypoxia-Induced Supramolecular Perylene Diimide Radical Anions in Tumors for Photothermal Therapy with Improved Specificity. Journal of the American Chemical Society, 2022, 144, 2360-2367.	13.7	122
56	Investigation into an Alternating Multilayer Film of Poly(4-Vinylpyridine) and Poly(acrylic acid) Based on Hydrogen Bonding. Langmuir, 1999, 15, 1360-1363.	3.5	121
57	Cucurbit[8]uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination. Chemical Communications, 2013, 49, 5766.	4.1	116
58	Single Polymer Chain Elongation of Poly(N-isopropylacrylamide) and Poly(acrylamide) by Atomic Force Microscopy. Journal of Physical Chemistry B, 2000, 104, 10258-10264.	2.6	112
59	Hostâ€Enhanced ï€â€"ï€ Interaction for Waterâ€Soluble Supramolecular Polymerization. Chemistry - A European Journal, 2011, 17, 9930-9935.	3.3	111
60	Photoresponsive Supramolecular Amphiphiles for Controlled Selfâ€Assembly of Nanofibers and Vesicles. Advanced Materials, 2010, 22, 2553-2555.	21.0	109
61	Supra-Amphiphiles: A New Bridge Between Colloidal Science and Supramolecular Chemistry. Langmuir, 2014, 30, 5989-6001.	3.5	109
62	Water-soluble supramolecular hyperbranched polymers based on host-enhanced π–π interaction. Polymer Chemistry, 2013, 4, 900.	3.9	108
63	Supramolecular Interfacial Polymerization: A Controllable Method of Fabricating Supramolecular Polymeric Materials. Angewandte Chemie - International Edition, 2017, 56, 7639-7643.	13.8	108
64	A new kind of immobilized enzyme multilayer based on cationic and anionic interaction. Macromolecular Rapid Communications, 1994, 15, 405-409.	3.9	107
65	Azobenzene-Containing Supramolecular Side-Chain Polymer Films for Laser-Induced Surface Relief Gratings. Chemistry of Materials, 2007, 19, 3877-3881.	6.7	105
66	The Introduction of π-π Stacking Moieties for Fabricating Stable Micellar Structure: Formation and Dynamics of Disklike Micelles. Angewandte Chemie - International Edition, 2005, 44, 4731-4735.	13.8	103
67	A supramolecular strategy for tuning the energy level of naphthalenediimide: Promoted formation of radical anions with extraordinary stability. Chemical Science, 2015, 6, 3342-3346.	7.4	102
68	Single-Molecule Force Spectroscopy on Poly(acrylic acid) by AFM. Langmuir, 1999, 15, 2120-2124.	3.5	100
69	Fabrication of ultrathin film containing bienzyme of glucose oxidase and glucoamylase based on electrostatic interaction and its potential application as a maltose sensor. Macromolecular Chemistry and Physics, 1996, 197, 147-153.	2.2	97
70	Roselike Microstructures Formed by Direct In Situ Hydrothermal Synthesis:  From Superhydrophilicity to Superhydrophobicity. Chemistry of Materials, 2005, 17, 6177-6180.	6.7	97
71	A Selfâ€Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angewandte Chemie - International Edition, 2021, 60, 706-710.	13.8	97
72	A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles. Advanced Materials, 1998, 10, 529-532.	21.0	96

#	Article	IF	CITATIONS
73	Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings. Chemistry of Materials, 2007, 19, 14-17.	6.7	93
74	Highly Transparent, Underwater Self-Healing, and Ionic Conductive Elastomer Based on Multivalent Ion–Dipole Interactions. Chemistry of Materials, 2020, 32, 6310-6317.	6.7	93
75	Dissipative Supramolecular Polymerization Powered by Light. CCS Chemistry, 2019, 1, 335-342.	7.8	93
76	Build-up of a new type of ultrathin film of porphyrin and phthalocyanine based on cationic and anionic electrostatic attraction. Journal of the Chemical Society Chemical Communications, 1994, , 1055.	2.0	92
77	Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. Chemical Communications, 2009, , 5380.	4.1	90
78	Molecular engineering of polymeric supra-amphiphiles. Chemical Society Reviews, 2019, 48, 989-1003.	38.1	90
79	Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes. Journal of the American Chemical Society, 2016, 138, 16372-16379.	13.7	82
80	Selfâ€Assembled Monolayers of a Malachite Green Derivative: Surfaces with pH―and UVâ€Responsive Wetting Properties. Advanced Materials, 2008, 20, 1972-1977.	21.0	80
81	A supramolecular approach to fabricate highly emissive smart materials. Scientific Reports, 2013, 3, 2372.	3.3	80
82	Supramolecular Chemistry of Cucurbiturils: Tuning Cooperativity with Multiple Noncovalent Interactions from Positive to Negative. Langmuir, 2016, 32, 12352-12360.	3.5	80
83	Supramolecularly Catalyzed Polymerization: From Consecutive Dimerization to Polymerization. Angewandte Chemie - International Edition, 2018, 57, 8545-8549.	13.8	80
84	Cytotoxicity Regulated by Host–Guest Interactions: A Supramolecular Strategy to Realize Controlled Disguise and Exposure. ACS Applied Materials & Interfaces, 2016, 8, 22780-22784.	8.0	79
85	Reversible Self-Organization of a UV-Responsive PEG-Terminated Malachite Green Derivative:Â Vesicle Formation and Photoinduced Disassembly. Langmuir, 2007, 23, 4029-4034.	3.5	78
86	Supramolecular Chemotherapy: Carboxylated Pillar[6]arene for Decreasing Cytotoxicity of Oxaliplatin to Normal Cells and Improving Its Anticancer Bioactivity Against Colorectal Cancer. ACS Applied Materials & Interfaces, 2018, 10, 5365-5372.	8.0	78
87	Enzyme-responsive polymer assemblies constructed through covalent synthesis and supramolecular strategy. Chemical Communications, 2015, 51, 996-1003.	4.1	76
88	The fabrication of a supra-amphiphile for dissipative self-assembly. Chemical Science, 2016, 7, 1151-1155.	7.4	76
89	Supramolecular catalyst functions in catalytic amount: cucurbit[8]uril accelerates the photodimerization of Brooker's merocyanine. Chemical Science, 2017, 8, 8357-8361.	7.4	76
90	Supramolecular polymer fabricated by click polymerization from supramonomer. Polymer Chemistry, 2014, 5, 323-326.	3.9	74

#	Article	IF	CITATIONS
91	Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer. Biomaterials, 2018, 178, 697-705.	11.4	74
92	Supramolecular Polymerization at Low Monomer Concentrations: Enhancing Intermolecular Interactions and Suppressing Cyclization by Rational Molecular Design. Chemistry - A European Journal, 2012, 18, 15650-15654.	3.3	72
93	Hyperbranched polyselenides as glutathione peroxidase mimics. Chemical Communications, 2006, , 796.	4.1	71
94	Porphyrin-containing hyperbranched supramolecular polymers: enhancing ¹ O ₂ -generation efficiency by supramolecular polymerization. Polymer Chemistry, 2014, 5, 53-56.	3.9	70
95	A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie - International Edition, 2016, 55, 8933-8937.	13.8	69
96	Self-Assembly of Supra-amphiphiles Based on Dual Charge-Transfer Interactions: From Nanosheets to Nanofibers. Langmuir, 2012, 28, 10697-10702.	3.5	68
97	Single Molecule Force Spectroscopy on Polyelectrolytes:Â Effect of Spacer on Adhesion Force and Linear Charge Density on Rigidity. Macromolecules, 2004, 37, 946-953.	4.8	67
98	Fabrication of Reactivated Biointerface for Dualâ€Controlled Reversible Immobilization of Cytochrome c. Advanced Materials, 2009, 21, 4362-4365.	21.0	64
99	Fabricating covalently attached hyperbranched polymers by combining photochemistry with supramolecular polymerization. Polymer Chemistry, 2014, 5, 1471-1476.	3.9	64
100	Supraâ€Amphiphiles for Functional Assemblies. Advanced Functional Materials, 2016, 26, 8920-8931.	14.9	64
101	Supramolecular Polymerization Controlled through Kinetic Trapping. Angewandte Chemie - International Edition, 2017, 56, 16575-16578.	13.8	64
102	A Bacteriaâ€Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	64
103	Surface-Imprinted Nanostructured Layer-by-Layer Film for Molecular Recognition of Theophylline Derivatives. Langmuir, 2008, 24, 11988-11994.	3.5	63
104	Superamphiphiles as Building Blocks for Supramolecular Engineering: Towards Functional Materials and Surfaces. Small, 2011, 7, 1379-1383.	10.0	63
105	Super Strong and Multi-Reusable Supramolecular Epoxy Hot Melt Adhesives. , 2021, 3, 1003-1009.		62
106	Light-Controlled Single-Walled Carbon Nanotube Dispersions in Aqueous Solution. Langmuir, 2008, 24, 9233-9236.	3.5	61
107	Targeting the Cell Membrane by Charge-Reversal Amphiphilic Pillar[5]arene for the Selective Killing of Cancer Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 38497-38502.	8.0	61
108	Cucurbit[<i>n</i>]urils for Supramolecular Catalysis. Chemistry - A European Journal, 2020, 26, 15446-15460.	3.3	61

#	Article	IF	CITATIONS
109	Enzyme-Responsive Polymeric Supra-Amphiphiles Formed by the Complexation of Chitosan and ATP. Langmuir, 2012, 28, 14562-14566.	3.5	60
110	Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer. Polymer Chemistry, 2015, 6, 2817-2821.	3.9	60
111	Simple Method to Isolate Single Polymer Chains for the Direct Measurement of the Desorption Force. Nano Letters, 2003, 3, 245-248.	9.1	59
112	Force spectroscopy of polymers: Studying on intramolecular and intermolecular interactions in single molecular level. Polymer, 2008, 49, 3353-3361.	3.8	59
113	From Bolaâ€amphiphiles to Supraâ€amphiphiles: The Transformation from Twoâ€Dimensional Nanosheets into Oneâ€Dimensional Nanofibers with Tunableâ€Packing Fashion of nâ€Type Chromophores. Chemistry - A European Journal, 2012, 18, 8622-8628.	3.3	57
114	Self-Assembly of a Functional Oligo(Aniline)-Based Amphiphile into Helical Conductive Nanowires. Journal of the American Chemical Society, 2015, 137, 14288-14294.	13.7	57
115	Closed Mechanoelectrochemical Cycles of Individual Singleâ€Chain Macromolecular Motors by AFM. Angewandte Chemie - International Edition, 2007, 46, 8400-8404.	13.8	56
116	Tuning the Energy Gap by Supramolecular Approaches: Towards Nearâ€Infrared Organic Assemblies and Materials. Small, 2016, 12, 24-31.	10.0	56
117	Single-Molecule Force Spectroscopy on Curdlan:  Unwinding Helical Structures and Random Coils. Nano Letters, 2003, 3, 1119-1124.	9.1	55
118	Biostructure-like Surfaces with Thermally Responsive Wettability Prepared by Temperature-Induced Phase Separation Micromolding. Langmuir, 2010, 26, 9673-9676.	3.5	55
119	Activatable Photosensitizer for Smart Photodynamic Therapy Triggered by Reactive Oxygen Species in Tumor Cells. ACS Applied Materials & Interfaces, 2020, 12, 26982-26990.	8.0	55
120	Combining Hydrogen-Bonding Complexation in Solution and Hydrogen-Bonding-Directed Layer-by-Layer Assembly for the Controlled Loading of a Small Organic Molecule into Multilayer Films. Langmuir, 2007, 23, 11631-11636.	3.5	53
121	Controllable Supramolecular Polymerization through Host–Guest Interaction and Photochemistry. ACS Macro Letters, 2015, 4, 611-615.	4.8	53
122	Polypseudorotaxane Constructed from Cationic Polymer with Cucurbit[7]uril for Controlled Antibacterial Activity. ACS Macro Letters, 2016, 5, 1109-1113.	4.8	53
123	Supramolecular Peptide Therapeutics: Host–Guest Interaction-Assisted Systemic Delivery of Anticancer Peptides. CCS Chemistry, 2020, 2, 739-748.	7.8	53
124	Force Spectroscopy Study on Poly(acrylamide) Derivatives:  Effects of Substitutes and Buffers on Single-Chain Elasticity. Nano Letters, 2002, 2, 1169-1172.	9.1	52
125	Acetylcholinesterase Responsive Polymeric Supra-Amphiphiles for Controlled Self-Assembly and Disassembly. Langmuir, 2012, 28, 6032-6036.	3.5	52
126	Unconventional Layerâ€byâ€Layer Assembly: Surface Molecular Imprinting and Its Applications. Small, 2012, 8, 517-523.	10.0	52

#	Article	IF	CITATIONS
127	Water-soluble supramolecular polymers fabricated through specific interactions between cucurbit[8]uril and a tripeptide of Phe-Gly-Gly. Polymer Chemistry, 2013, 4, 5378.	3.9	52
128	Bolaform Superamphiphile Based on a Dynamic Covalent Bond and Its Self-Assembly in Water. Langmuir, 2011, 27, 12375-12380.	3.5	50
129	Reversible Disulfide Cross-Linking in Layer-by-Layer Films:Â Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release. Langmuir, 2007, 23, 6377-6384.	3.5	49
130	Pillar[6]arene Containing Multilayer Films: Reversible Uptake and Release of Guest Molecules with Methyl Viologen Moieties. ACS Applied Materials & Interfaces, 2016, 8, 3679-3685.	8.0	49
131	Single molecule force spectroscopy on poly(vinyl alcohol) by atomic force microscopy. Macromolecular Rapid Communications, 1998, 19, 609-612.	3.9	48
132	Unexpected Temperature-Dependent Single Chain Mechanics of Poly(<i>N</i> -isopropyl-acrylamide) in Water. Langmuir, 2012, 28, 5151-5157.	3.5	48
133	Rational Adjustment of Multicolor Emissions by Cucurbiturils-Based Host–Guest Chemistry and Photochemistry. Langmuir, 2013, 29, 12909-12914.	3.5	48
134	A New Dynamic Covalent Bond of SeN: Towards Controlled Selfâ€Assembly and Disassembly. Chemistry - A European Journal, 2013, 19, 9506-9510.	3.3	48
135	Tuning the Surface Activity of Gemini Amphiphile by the Host–Guest Interaction of Cucurbit[7]uril. Langmuir, 2015, 31, 120-124.	3.5	46
136	Supramolecular Radical Anions Triggered by Bacteria Inâ€Situ for Selective Photothermal Therapy. Angewandte Chemie, 2017, 129, 16457-16460.	2.0	46
137	Self-Motivated Supramolecular Combination Chemotherapy for Overcoming Drug Resistance Based on Acid-Activated Competition of Host–Guest Interactions. CCS Chemistry, 2021, 3, 1413-1425.	7.8	46
138	Single-Chain Elasticity of Poly(ferrocenyldimethylsilane) and Poly(ferrocenylmethylphenylsilane). Macromolecules, 2004, 37, 1839-1842.	4.8	45
139	Single-Molecule Force Spectroscopy of Selenium-Containing Amphiphilic Block Copolymer: Toward Disassembling the Polymer Micelles. Langmuir, 2012, 28, 9601-9605.	3.5	45
140	Hydrogen-Bonding-Directed Layer-by-Layer Films:Â Effect of Electrostatic Interaction on the Microporous Morphology Variation. Langmuir, 2004, 20, 11828-11832.	3.5	44
141	Single-Chain Mechanical Property of Poly(N-vinyl-2-pyrrolidone) and Interaction with Small Molecules. Journal of Physical Chemistry B, 2005, 109, 14807-14812.	2.6	44
142	Block Copolymer Micelles as Matrixes for Incorporating Diselenide Compounds:Â A Model System for a Water-Soluble Glutathione Peroxidase Mimic Fine-Tuned by Ionic Strength. Langmuir, 2006, 22, 5552-5555.	3.5	44
143	Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie - International Edition, 2018, 57, 6077-6081.	13.8	44
144	A Supramolecular Radical Dimer: Highâ€Efficiency NIRâ€II Photothermal Conversion and Therapy. Angewandte Chemie, 2019, 131, 15672-15677.	2.0	44

#	Article	IF	CITATIONS
145	Single-Molecule Study on Intermolecular Interaction between C60and Porphyrin Derivatives: Toward Understanding the Strength of the Multivalency. Langmuir, 2009, 25, 6627-6632.	3.5	43
146	Generation of 2D organic microsheets from protonated melamine derivatives: suppression of the self assembly of a particular dimension by introduction of alkyl chains. Chemical Science, 2012, 3, 3227.	7.4	43
147	Fabrication of well-defined crystalline azacalixarene nanosheets assisted by Seâ< N non-covalent interactions. Chemical Communications, 2012, 48, 7495.	4.1	43
148	Molecular Dynamics Simulations of the Supramolecular Assembly between an Azobenzene-Containing Surfactant and α-Cyclodextrin: Role of Photoisomerization. Journal of Physical Chemistry B, 2012, 116, 823-832.	2.6	43
149	Tuning Polymeric Amphiphilicity via Se–N Interactions: Towards Oneâ€Step Double Emulsion for Highly Selective Enzyme Mimics. Small, 2015, 11, 1537-1541.	10.0	43
150	Visibleâ€Lightâ€Induced Disruption of Diselenideâ€Containing Layerâ€byâ€Layer Films: Toward Combination of Chemotherapy and Photodynamic Therapy. Small, 2013, 9, 3981-3986.	10.0	42
151	Superamphiphiles Based on Charge Transfer Complex: Controllable Hierarchical Self-Assembly of Nanoribbons. Langmuir, 2010, 26, 14509-14511.	3.5	41
152	Surface Molecular Imprinting in Layer-by-Layer films on Silica Particles. Langmuir, 2012, 28, 4267-4273.	3.5	41
153	Supramolecular Polymerization from Controllable Fabrication to Living Polymerization. Macromolecular Rapid Communications, 2017, 38, 1700312.	3.9	41
154	A monolayer of PbI2nanoparticles adsorbed on MD–LB film. Journal of the Chemical Society Chemical Communications, 1994, , 2229-2230.	2.0	40
155	pH and enzymatic double-stimuli responsive multi-compartment micelles from supra-amphiphilic polymers. Polymer Chemistry, 2012, 3, 3056.	3.9	40
156	UV-Responsive Polymeric Superamphiphile Based on a Complex of Malachite Green Derivative and a Double Hydrophilic Block Copolymer. Langmuir, 2011, 27, 14108-14111.	3.5	39
157	Visible-Light Photoinduced Electron Transfer Promoted by Cucurbit[8]uril-Enhanced Charge Transfer Interaction: Toward Improved Activity of Photocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 22635-22640.	8.0	39
158	Intercalation Interactions between dsDNA and Acridine Studied by Single Molecule Force Spectroscopy. Langmuir, 2007, 23, 9140-9142.	3.5	38
159	Fullyâ€Branched Hyperbranched Polymers with a Diselenide Core as Glutathione Peroxidase Mimics. Macromolecular Rapid Communications, 2012, 33, 798-804.	3.9	38
160	Controlling the self-assembly of cationic bolaamphiphiles: hydrotropic counteranions determine aggregated structures. Chemical Science, 2014, 5, 3267-3274.	7.4	38
161	Supramolecular Glycolipid Based on Host-Enhanced Charge Transfer Interaction. Langmuir, 2013, 29, 12375-12379.	3.5	37
162	Controlling the self-assembly of cationic bolaamphiphiles: counterion-directed transitions from 0D/1D to exclusively 2D planar structures. Chemical Science, 2013, 4, 4486.	7.4	37

#	Article	IF	CITATIONS
163	Supramolecular polymers bearing disulfide bonds. Polymer Chemistry, 2014, 5, 6439-6443.	3.9	37
164	Amphiphilic diselenide-containing supramolecular polymers. Polymer Chemistry, 2015, 6, 681-685.	3.9	37
165	Controllable Supramolecular Polymerization Promoted by Host-Enhanced Photodimerization. ACS Macro Letters, 2016, 5, 1397-1401.	4.8	37
166	Controllable supramolecular polymerization through self-sorting of aliphatic and aromatic motifs. Polymer Chemistry, 2016, 7, 1397-1404.	3.9	37
167	Photo-responsive supramolecular polymers synthesized by olefin metathesis polymerization from supramonomers. Polymer Chemistry, 2016, 7, 2333-2336.	3.9	37
168	A Convenient A2 + B3 Approach to Hyperbranched Poly(arylene oxindole)s. Macromolecular Rapid Communications, 2005, 26, 1458-1463.	3.9	36
169	Force spectroscopy of polymers: Beyond single chain mechanics. Current Opinion in Solid State and Materials Science, 2005, 9, 140-148.	11.5	36
170	Host–guest chemistry at interface for photoswitchable bioelectrocatalysis. Chemical Communications, 2011, 47, 5994.	4.1	36
171	How to Make Weak Noncovalent Interactions Stronger. Chemistry - A European Journal, 2015, 21, 11938-11946.	3.3	36
172	An Amylase-Responsive Bolaform Supra-Amphiphile. ACS Applied Materials & Interfaces, 2016, 8, 4927-4933.	8.0	36
173	Supramolecular Interfacial Polymerization: A Controllable Method of Fabricating Supramolecular Polymeric Materials. Angewandte Chemie, 2017, 129, 7747-7751.	2.0	36
174	Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials. Progress in Polymer Science, 2022, 124, 101486.	24.7	36
175	Desorption Force per Polystyrene Segment in Water. Macromolecules, 2003, 36, 3779-3782.	4.8	34
176	Mechanism of Surface Molecular Imprinting in Polyelectrolyte Multilayers. Langmuir, 2010, 26, 10122-10128.	3.5	34
177	H-Shaped Supra-Amphiphiles Based on a Dynamic Covalent Bond. Langmuir, 2012, 28, 14567-14572.	3.5	34
178	pH-Induced Charge-Reversal Amphiphile with Cancer Cell-Selective Membrane-Disrupting Activity. ACS Applied Materials & Interfaces, 2018, 10, 21191-21197.	8.0	34
179	Supramolecular Emulsion Interfacial Polymerization. ACS Macro Letters, 2019, 8, 177-182.	4.8	34
180	Confined supramolecular nanostructures of mesogen-bearing amphiphilesElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b2/b201444k/. Chemical Communications, 2002, , 1008-1009.	4.1	33

#	Article	IF	CITATIONS
181	Controlling the Reactivity of the SeSe Bond by the Supramolecular Chemistry of Cucurbituril. ChemPhysChem, 2015, 16, 523-527.	2.1	33
182	Supramolecular Microgels Fabricated from Supramonomers. ACS Macro Letters, 2016, 5, 1084-1088.	4.8	33
183	Supramolecular Interfacial Polymerization of Miscible Monomers: Fabricating Supramolecular Polymers with Tailor-Made Structures. Macromolecules, 2018, 51, 1620-1625.	4.8	33
184	Hydrogen bonded layer-by-layer assembly of poly(2-vinylpyridine) and poly(acrylic acid): Influence of molecular weight on the formation of microporous film by post-base treatment. European Polymer Journal, 2007, 43, 2784-2791.	5.4	32
185	Supramolecular polymerization of supramonomers: a way for fabricating supramolecular polymers. Polymer Chemistry, 2014, 5, 5895-5899.	3.9	32
186	Supramolecular Polymerization Controlled by Reversible Conformational Modulation. ACS Macro Letters, 2015, 4, 1410-1414.	4.8	32
187	Tuning Supramolecular Structure and Functions of Peptide <i>bola</i> -Amphiphile by Solvent Evaporation–Dissolution. ACS Applied Materials & Interfaces, 2017, 9, 21390-21396.	8.0	32
188	Oxygen Bridge Inhibits Conformational Transition of 1,4-Linked α-d-Galactose Detected by Single-Molecule Atomic Force Microscopy. Macromolecules, 2002, 35, 871-876.	4.8	31
189	LMDI Decomposition of Energy-Related CO2 Emissions Based on Energy and CO2 Allocation Sankey Diagrams: The Method and an Application to China. Sustainability, 2018, 10, 344.	3.2	31
190	Antibacterial supramolecular polymers constructed <i>via</i> self-sorting: promoting antibacterial performance and controllable degradation. Materials Chemistry Frontiers, 2019, 3, 806-811.	5.9	30
191	Formation of supramolecular aggregates by hydrogen bonding based on bispyrimidine and bisbarbituric acid. Macromolecular Chemistry and Physics, 1997, 198, 573-579.	2.2	29
192	Facile Reversible UV-Controlled and Fast Transition from Emulsion to Gel by Using a Photoresponsive Polymer with a Malachite Green Group. Langmuir, 2009, 25, 10134-10138.	3.5	29
193	Redox-responsive thermal sensitivity based on a selenium-containing small molecule. Chemical Communications, 2014, 50, 2585.	4.1	29
194	Ionic Self-Assembly of Glucose Oxidase with Polycation Bearing Os Complex. Macromolecular Chemistry and Physics, 2001, 202, 111-116.	2.2	28
195	In Situ Gamma Ray-Initiated Polymerization To Stabilize Surface Micelles. Journal of the American Chemical Society, 2004, 126, 6572-6573.	13.7	28
196	Bolaform Supramolecular Amphiphiles as a Novel Concept for the Buildup of Surface-Imprinted Films. Langmuir, 2011, 27, 10370-10375.	3.5	28
197	Single-Molecule Force Spectroscopy on Carrageenan by Means of AFM. Macromolecular Rapid Communications, 2001, 22, 1163.	3.9	27
198	Force Spectroscopy of Single-Chain Polysaccharides:Â Force-Induced Conformational Transition of Amylose Disappears under Environment of Micelle Solution. Macromolecules, 2006, 39, 3480-3483.	4.8	27

#	Article	IF	CITATIONS
199	Multilayer Films with Nanocontainers: Redoxâ€Controlled Reversible Encapsulation of Guest Molecules. Chemistry - A European Journal, 2012, 18, 14968-14973.	3.3	27
200	Degradable Supramolecular Photodynamic Polymer Materials for Biofilm Elimination. ACS Applied Bio Materials, 2019, 2, 2920-2926.	4.6	27
201	Cucurbit[10]uril-Encapsulated Cationic Porphyrins with Enhanced Fluorescence Emission and Photostability for Cell Imaging. ACS Applied Materials & amp; Interfaces, 2021, 13, 2269-2276.	8.0	27
202	Full View of Single-Molecule Force Spectroscopy of Polyaniline in Oxidized, Reduced, and Doped States. Langmuir, 2009, 25, 10002-10006.	3.5	26
203	Single-Molecule Force Spectroscopy of an Artificial DNA Duplex Comprising a Silver(I)-Mediated Base Pair. Langmuir, 2015, 31, 11305-11310.	3.5	26
204	Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Hostâ€Enhanced Charge Transfer. Angewandte Chemie - International Edition, 2021, 60, 9384-9388.	13.8	26
205	Ex Situ SFM Study of 2-D Aggregate Geometry of Azobenzene Containing Bolaform Amphiphiles after Adsorption at the Mica/Aqueous Solution Interface. Langmuir, 2001, 17, 3682-3688.	3.5	25
206	Metalâ^'Ligand Coordination-Induced Self-Assembly of Bolaamphiphiles Bearing Bipyrimidine. Langmuir, 2009, 25, 13306-13310.	3.5	25
207	Study on Intercalations between Double-Stranded DNA and Pyrene by Single-Molecule Force Spectroscopy: Toward the Detection of Mismatch in DNA. Langmuir, 2010, 26, 13773-13777.	3.5	25
208	Supra-amphiphiles formed by complexation of azulene-based amphiphiles and pyrene in aqueous solution: from cylindrical micelles to disklike nanosheets. Chemical Communications, 2013, 49, 1808.	4.1	25
209	Supramolecular polymerization at the interface: layer-by-layer assembly driven by host-enhanced π–π interaction. Chemical Communications, 2014, 50, 11173-11176.	4.1	25
210	Supramolecular polymers synthesized by thiol–ene click polymerization from supramonomers. Polymer Chemistry, 2015, 6, 369-372.	3.9	25
211	Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule. Langmuir, 2016, 32, 2410-2418.	3.5	25
212	Polymerization of supramonomers: A new way for fabricating supramolecular polymers and materials. Journal of Polymer Science Part A, 2017, 55, 604-609.	2.3	25
213	Fabrication of <i>nor-seco</i> -cucurbit[10]uril based supramolecular polymers <i>via</i> self-sorting. Chemical Communications, 2019, 55, 13836-13839.	4.1	25
214	A Selfâ€Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angewandte Chemie, 2021, 133, 716-720.	2.0	25
215	Self-assembled monolayers of new dendron-thiols: manipulation of the patterned surface and wetting properties. Chemical Communications, 2001, , 1906-1907.	4.1	24
216	Desorption Force of Poly(4-vinylpyridine) Layer Assemblies from Amino Groups Modified Substrates. Journal of Physical Chemistry B, 2002, 106, 12705-12708.	2.6	24

#	Article	IF	CITATIONS
217	Stabilizing Bolaform Amphiphile Interfacial Assemblies by Introducing Mesogenic Groups. Chemistry - A European Journal, 2003, 9, 1876-1880.	3.3	24
218	Force Spectroscopy on Dendronized Poly(p-phenylene)s:  Revealing the Chain Elasticity and the Interfacial Interaction. Macromolecules, 2005, 38, 861-866.	4.8	24
219	Bolaamphiphiles Bearing Bipyridine as Mesogenic Core: Rational Exploitation of Molecular Architectures for Controlled Self-Assembly. Langmuir, 2012, 28, 5023-5030.	3.5	24
220	Multi-recyclable Shape Memory Supramolecular Polyurea with Long Cycle Life and Superior Stability. , 2021, 3, 331-336.		24
221	Nano-size stripes of self-assembled bolaform amphiphiles. Chemical Communications, 2000, , 1273-1274.	4.1	23
222	Investigation into pH-Responsive Self-Assembled Monolayers of Acylated Anthranilate-Terminated Alkanethiol on a Gold Surface. Langmuir, 2006, 22, 3715-3720.	3.5	23
223	Hydrogen-bonding-directed layer-by-layer polymer films: Substrate effect on the microporous morphology variation. European Polymer Journal, 2006, 42, 900-907.	5.4	23
224	Thermosensitive micelles formed from a small-molecule amphiphile: switchable LCST and potential application in cloud point separation. Chemical Communications, 2013, 49, 5580.	4.1	23
225	Asymmetric and Symmetric Bolaform Supra-Amphiphiles: Formation of Imine Bond Influenced by Aggregation. Langmuir, 2014, 30, 1531-1535.	3.5	23
226	Host–Guest Interactions between Oxaliplatin and Cucurbit[7]uril/Cucurbit[7]uril Derivatives under Pseudo-Physiological Conditions. Langmuir, 2020, 36, 1235-1240.	3.5	23
227	Combining Hostâ^'Guest Systems with Nonfouling Material for the Fabrication of a Biosurface: Toward Nearly Complete and Reversible Resistance of Cytochrome c. Langmuir, 2010, 26, 12515-12517.	3.5	22
228	Study on Polymer Micelles of Hydrophobically Modified Ethyl Hydroxyethyl Cellulose Using Single-Molecule Force Spectroscopy. Langmuir, 2001, 17, 4799-4808.	3.5	21
229	Stable Entrapment of Small Molecules Bearing Sulfonate Groups in Multilayer Assemblies. Langmuir, 2001, 17, 4035-4041.	3.5	21
230	Self-Organization of Polymerizable Bolaamphiphiles Bearing Diacetylene Mesogenic Group. Langmuir, 2007, 23, 5936-5941.	3.5	21
231	A supramolecular radical cation: folding-enhanced electrostatic effect for promoting radical-mediated oxidation. Chemical Science, 2018, 9, 5015-5020.	7.4	21
232	Stimuli-responsive materials: a web themed collection. Materials Chemistry Frontiers, 2019, 3, 10-11.	5.9	21
233	pH/ROS Dual-Responsive Supramolecular Vesicles Fabricated by Carboxylated Pillar[6]arene-Based Host–Guest Recognition and Phenylboronic Acid Pinacol Ester Derivative. Langmuir, 2020, 36, 4080-4087.	3.5	21
234	Single-Molecule Force Spectroscopy Quantification of Adhesive Forces in Cucurbit[8]Uril Host–Guest Ternary Complexes. Langmuir, 2017, 33, 1343-1350.	3.5	20

#	Article	IF	CITATIONS
235	Synthesis and properties of polyester dendrimers bearing carbazole groups in their periphery. Macromolecular Chemistry and Physics, 1998, 199, 1323-1327.	2.2	19
236	Interfacial Fabrication of Functional Supramolecular Polymeric Networks for Photocatalysis. Langmuir, 2014, 30, 15462-15467.	3.5	19
237	A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie, 2016, 128, 9079-9083.	2.0	19
238	Charge-reversal surfactant antibiotic material for reducing microbial corrosion in petroleum exploitation and transportation. Science Advances, 2020, 6, eaba7524.	10.3	19
239	Effects of pH on the supramolecular structure of polymeric molecular deposition films. Macromolecular Chemistry and Physics, 1996, 197, 509-515.	2.2	18
240	Interaction between Dendrons Directly Studied by Single-Molecule Force Spectroscopy. Langmuir, 2008, 24, 1318-1323.	3.5	18
241	Cucurbit[8]uril as Nanocontainer in a Polyelectrolyte Multilayer Film: A Quantitative and Kinetic Study of Guest Uptake. Langmuir, 2015, 31, 10734-10742.	3.5	18
242	Toward understanding the effect of substitutes and solvents on entropic and enthalpic elasticity of single dendronized copolymers. Polymer, 2006, 47, 2499-2504.	3.8	17
243	A new complex polymeric Langmuir-Blodgett film of fullerene. Macromolecular Rapid Communications, 1994, 15, 373-377.	3.9	16
244	Application of MLPG in Large Deformation Analysis. Acta Mechanica Sinica/Lixue Xuebao, 2006, 22, 331-340.	3.4	16
245	Selectively Erasable Multilayer Thin Film by Photoinduced Disassembly. Langmuir, 2010, 26, 9736-9741.	3.5	16
246	Supramolecular Germicide Switches through Hostâ€Guest Interactions for Decelerating Emergence of Drugâ€Resistant Pathogens. ChemistrySelect, 2017, 2, 7940-7945.	1.5	16
247	Supramolecular Polymerization Controlled through Kinetic Trapping. Angewandte Chemie, 2017, 129, 16802-16805.	2.0	16
248	Cucurbit[7]uril promoted Fenton oxidation by modulating the redox property of catalysts. Chemical Communications, 2019, 55, 14127-14130.	4.1	16
249	Host–Guest Interaction between Corona[<i>n</i>]arene and Bisquaternary Ammonium Derivatives for Fabricating Supra-Amphiphile. Langmuir, 2017, 33, 5829-5834.	3.5	15
250	Fluorescence "Turn-On―Enzyme-Responsive Supra-Amphiphile Fabricated by Host–Guest Recognition between γ-Cyclodextrin and a Tetraphenylethylene-Sodium Glycyrrhetinate Conjugate. Langmuir, 2021, 37, 6062-6068.	3.5	15
251	An Activatable Host–Guest Conjugate as a Nanocarrier for Effective Drug Release through Self-Inclusion. ACS Applied Materials & Interfaces, 2021, 13, 33962-33968.	8.0	15
252	Self-Organization of Bolaamphiphile Bearing Biphenyl Mesogen and Aspartic-Acid Headgroups. Journal of Physical Chemistry C, 2008, 112, 3308-3313.	3.1	14

#	Article	IF	CITATIONS
253	Cucurbit[7]uril as a "protective agent― controlling photochemistry and detecting 1-adamantanamine. Chemical Communications, 2013, 49, 3905.	4.1	14
254	Supramolecularly Catalyzed Polymerization: From Consecutive Dimerization to Polymerization. Angewandte Chemie, 2018, 130, 8681-8685.	2.0	14
255	<i>In My Element</i> : Selenium. Chemistry - A European Journal, 2019, 25, 2649-2650.	3.3	14
256	Layer-by-Layer Assembly of Azulene-Based Supra-Amphiphiles: Reversible Encapsulation of Organic Molecules in Water by Charge-Transfer Interaction. Langmuir, 2013, 29, 6348-6353.	3.5	13
257	Stretching Single Polymer Chains of Donor–Acceptor Foldamers: Toward the Quantitative Study on the Extent of Folding. Langmuir, 2013, 29, 14438-14443.	3.5	13
258	Force Required to Disassemble Block Copolymer Micelles in Water. Langmuir, 2010, 26, 9183-9186.	3.5	12
259	Supramolecular Switching Surface for Antifouling and Bactericidal Activities. ACS Applied Bio Materials, 2019, 2, 638-643.	4.6	12
260	Tumor acidity-induced charge-reversal liposomal doxorubicin with enhanced cancer cell uptake and anticancer activity. Giant, 2021, 6, 100052.	5.1	12
261	AFM Force Mapping for Characterizing Patterns of Electrostatic Charges on SiO2 Electrets. Langmuir, 2010, 26, 11958-11962.	3.5	11
262	Preface to the Supramolecular Chemistry at Interfaces Special Issue. Langmuir, 2011, 27, 1245-1245.	3.5	11
263	pH-Responsive Host–Guest Complexation in Pillar[6]arene-Containing Polyelectrolyte Multilayer Films. Polymers, 2017, 9, 719.	4.5	11
264	Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie, 2018, 130, 6185-6189.	2.0	11
265	Supramolecular Polymeric Radicals: Highly Promoted Formation and Stabilization of Naphthalenediimide Radical Anions. Macromolecular Rapid Communications, 2020, 41, 2000080.	3.9	11
266	Macromolecular self-assembly and nanotechnology in China. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120305.	3.4	10
267	Cross-linked supramolecular polymers synthesized by photo-initiated thiol-ene click reaction of supramonomers. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 414-418.	3.9	10
268	DIRECT MEASUREMENTS OF INTERMOLECULAR INTERACTIONS. Acta Polymerica Sinica, 2009, 009, 973-979.	0.0	10
269	Supramolecular Free Radicals: Fabrication, Modulation and Functions. Acta Chimica Sinica, 2018, 76, 659.	1.4	10
270	A Bacteriaâ€Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angewandte Chemie, 2022, 134, .	2.0	10

#	Article	IF	CITATIONS
271	Stabilizing interfacial micellar aggregates by enhanced supramolecular interaction or surface polymerization. Pure and Applied Chemistry, 2006, 78, 1015-1023.	1.9	9
272	Supramolecular Polymerization at Interfaces. Langmuir, 2022, 38, 4157-4163.	3.5	9
273	Two- and Three-Dimensional Molecular Organization of Schiff-Base Derivatives. ChemPhysChem, 2004, 5, 202-208.	2.1	8
274	Self-assembling 1D core/shell microrods by the introduction of additives: a one-pot and shell-tunable method. Chemical Science, 2015, 6, 4907-4911.	7.4	8
275	Atomic force microscopic (AFM) study on a self-organizing polymer film. Polymer Bulletin, 1998, 41, 695-699.	3.3	7
276	The unwinding of surfactant-induced helical structure of carboxymethyl amylose by single molecule force spectroscopy. Polymer, 2007, 48, 2030-2034.	3.8	7
277	Analyzing Carbon Emissions Embodied in Construction Services: A Dynamic Hybrid Input–Output Model with Structural Decomposition Analysis. Energies, 2019, 12, 1456.	3.1	6
278	A new kind of azo polymeric LB film for reversible optical storage. Polymer Bulletin, 1998, 40, 735-740.	3.3	5
279	Polymeric nanostructured composite films. Pure and Applied Chemistry, 2000, 72, 147-155.	1.9	5
280	Diversified Pattern Formation in Self-Assembly of Bolaform Amphiphiles Bearing Mesogenic Groups at an Interface. Langmuir, 2003, 19, 8122-8124.	3.5	5
281	Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models. Energies, 2019, 12, 300.	3.1	5
282	Cucurbit[7]uril-Modulated H/D Exchange of α-Carbonyl Hydrogen: Deceleration in Alkali and Acceleration in Acid Conditions. Langmuir, 2022, 38, 541-546.	3.5	5
283	A study of microgel star amphiphile monolayers. Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 157-161.	0.6	4
284	Supramolecular research by single molecule force spectroscopy. Macromolecular Symposia, 2003, 195, 109-114.	0.7	4
285	A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles. Advanced Materials, 1998, 10, 529-532.	21.0	4
286	SURFACE MOLECULAR ENGINEERING OF POLYMER MULTILAYER FILMS. Acta Polymerica Sinica, 2009, 007, 905-912.	0.0	4
287	Growth Mechanisms of 2D Organic Assemblies Generated from Dialkylated Melaminium Derivatives: The Length Difference of the Two Alkyl Chains That Matters. Langmuir, 2013, 29, 10959-10963.	3.5	3
288	Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy. Polymers, 2013, 5, 269-283.	4.5	3

#	Article	IF	CITATIONS
289	Two-Dimensional Folded Nanosheets Lead to an Unusual Circular Dichroism Effect in Aqueous Solution. Langmuir, 2014, 30, 6064-6070.	3.5	3
290	Introduction to supra-amphiphiles. Materials Chemistry Frontiers, 2020, 4, 11-11.	5.9	3
291	Rich-colour mechanochromism of a cyanostilbene derivative with chiral self-assembly. New Journal of Chemistry, 0, , .	2.8	3
292	Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Hostâ€Enhanced Charge Transfer. Angewandte Chemie, 2021, 133, 9470-9474.	2.0	3
293	Degradable Bactericide Constructed Using a Charge-Reversal Surfactant against Plant Pathogenic Bacteria. ACS Applied Materials & Interfaces, 2022, 14, 10134-10141.	8.0	3
294	Interfacial molecular assembly and surface patterning. Science Bulletin, 2001, 46, 1152-1155.	1.7	2
295	Layered Nanoarchitectures Based on Electro- and Photo-Active Building Blocks. , 0, , 301-330.		2
296	Supramolecular science: A new way to understand the matter world. Science Bulletin, 2003, 48, 1517-1518.	1.7	2
297	Investigation of Spontaneous Polycondensation of N-(O, O-Ditetradecyl) Phosphorylalanine in Highly Ordered Films by Ftir Spectroscopy. Journal of Chemical Research, 2004, 2004, 143-144.	1.3	2
298	Layer-by-Layer Assembly: From Conventional to Unconventional Methods. , 2012, , 43-67.		2
299	Correction to "Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule― Langmuir, 2017, 33, 5098-5098.	3.5	2
300	Chemistry and Physics at Play in Materials Science: the Centennial Celebration of Tsinghua University. Advanced Materials, 2011, 23, 1042-1043.	21.0	1
301	Chemical Sciences: Contributions to Building a Sustainable Society and Sharing of International Responsibilities. ACS Symposium Series, 2014, , 101-139.	0.5	1
302	Alternating deposition multilayer films of dendrimers/poly(4-vinylpyridine) based on hydrogen bonding. Science Bulletin, 2005, 50, 374-376.	1.7	0
303	TRR 61, The "Interplay―between Münster and Beijing for Promoting Research on Multilevel Molecular Assemblies: Structure, Dynamics, and Functions. Small, 2012, 8, 479-480.	10.0	0
304	Frontispiece: Cucurbit[<i>n</i>]urils for Supramolecular Catalysis. Chemistry - A European Journal, 2020, 26, .	3.3	0