Catherine Bougerol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4704707/publications.pdf

Version: 2024-02-01

288 papers 8,837 citations

41344 49 h-index 83 g-index

293 all docs

293 docs citations

times ranked

293

5658 citing authors

#	Article	IF	CITATIONS
1	Transport properties of a thin GaN channel formed in an Al _{0.9} Ga _{0.1} N/GaN heterostructure grown on AlN/sapphire template. Journal of Applied Physics, 2022, 131, 124501.	2.5	2
2	Solubility Limit of Ge Dopants in AlGaN: A Chemical and Microstructural Investigation Down to the Nanoscale. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4165-4173.	8.0	7
3	Improvement of critical temperature of niobium nitride deposited on 8-inch silicon wafers thanks to an AlN buffer layer. Superconductor Science and Technology, 2021, 34, 045002.	3.5	4
4	Dualâ€Color Emission from Monolithic <i>m</i> â€Plane Core–Shell InGaN/GaN Quantum Wells. Advanced Photonics Research, 2021, 2, 2000148.	3.6	5
5	Comprehensive model toward optimization of SAG In-rich InGaN nanorods by hydride vapor phase epitaxy. Nanotechnology, 2021, 32, 155601.	2.6	O
6	The role of surface diffusion in the growth mechanism of III-nitride nanowires and nanotubes. Nanotechnology, 2021, 32, 085606.	2.6	7
7	Toward Crack-Free Core–Shell GaN/AlGaN Quantum Wells. Crystal Growth and Design, 2021, 21, 6504-6511.	3.0	7
8	Correlative investigation of Mg doping in GaN layers grown at different temperatures by atom probe tomography and off-axis electron holography. Nanotechnology, 2020, 31, 045702.	2.6	12
9	UV Emission from GaN Wires with <i>m</i> -Plane Core–Shell GaN/AlGaN Multiple Quantum Wells. ACS Applied Materials & Interfaces, 2020, 12, 44007-44016.	8.0	16
10	Carrier dynamics near a crack in GaN microwires with AlGaN multiple quantum wells. Applied Physics Letters, 2020, 117, .	3.3	10
11	Controlling the shape of a tapered nanowire: lessons from the Burton-Cabrera-Frank model. Nanotechnology, 2020, 31, 274004.	2.6	3
12	Role of Underlayer for Efficient Core–Shell InGaN QWs Grown on <i>m</i> -plane GaN Wire Sidewalls. ACS Applied Materials & amp; Interfaces, 2020, 12, 19092-19101.	8.0	18
13	Formation of voids in selective area growth of InN nanorods in SiN _x on GaN templates. Nano Futures, 2020, 4, 025002.	2.2	5
14	Three-dimensional measurement of Mg dopant distribution and electrical activity in GaN by correlative atom probe tomography and off-axis electron holography. Journal of Applied Physics, 2020, 127, 065702.	2.5	15
15	Internal quantum efficiency of AlGaN/AlN quantum dot superlattices for electron-pumped ultraviolet sources. Nanotechnology, 2020, 31, 505205.	2.6	6
16	Optical and structural analysis of ultra-long GaAs nanowires after nitrogen-plasma passivation. Nano Express, 2020, 1, 020019.	2.4	8
17	High Lateral Breakdown Voltage in Thin Channel AlGaN/GaN High Electron Mobility Transistors on AlN/Sapphire Templates. Micromachines, 2019, 10, 690.	2.9	28
18	Si Doping of Vapor–Liquid–Solid GaAs Nanowires: n-Type or p-Type?. Nano Letters, 2019, 19, 4498-4504.	9.1	26

#	Article	IF	Citations
19	Design and implementation of bound-to-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature. Journal of Applied Physics, 2019, 125, 174505.	2.5	10
20	Selective growth of ordered hexagonal InN nanorods. CrystEngComm, 2019, 21, 2702-2708.	2.6	13
21	Improvement of the critical temperature of NbTiN films on III-nitride substrates. Superconductor Science and Technology, 2019, 32, 035008.	3.5	10
22	Compositional control of homogeneous InGaN nanowires with the In content up to 90%. Nanotechnology, 2019, 30, 044001.	2.6	12
23	Dopant radial inhomogeneity in Mg-doped GaN nanowires. Nanotechnology, 2018, 29, 255706.	2.6	19
24	High spatial resolution correlated investigation of Zn segregation to stacking faults in ZnTe/CdSe nanostructures. Applied Physics Letters, 2018, 112 , .	3.3	4
25	GaN/AlGaN Photovoltaic Quantum Well Infrared Photodetector at 2.3 μm. , 2018, , .		0
26	Green Electroluminescence from Radial <i>m</i> -Plane InGaN Quantum Wells Grown on GaN Wire Sidewalls by Metal–Organic Vapor Phase Epitaxy. ACS Photonics, 2018, 5, 4330-4337.	6.6	26
27	Circumventing the miscibility gap in InGaN nanowires emitting from blue to red. Nanotechnology, 2018, 29, 465602.	2.6	22
28	Influence of Silicon on the Nucleation Rate of GaAs Nanowires on Silicon Substrates. Journal of Physical Chemistry C, 2018, 122, 19230-19235.	3.1	15
29	Near-UV narrow bandwidth optical gain in lattice-matched Ill–nitride waveguides. Japanese Journal of Applied Physics, 2018, 57, 090305.	1.5	3
30	Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy. Nanotechnology, 2017, 28, 125602.	2.6	12
31	Thin-Wall GaN/InAlN Multiple Quantum Well Tubes. Nano Letters, 2017, 17, 3347-3355.	9.1	9
32	Effect of Al incorporation in nonpolar <i>m</i> -plane GaN/AlGaN multi-quantum-wells using plasma-assisted molecular-beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600849.	1.8	6
33	Effect of Ge-doping on the short-wave, mid- and far-infrared intersubband transitions in GaN/AlGaN heterostructures. Semiconductor Science and Technology, 2017, 32, 125002.	2.0	6
34	InGaN/GaN nanowire flexible light emitting diodes and photodetectors., 2017,,.		1
35	Flexible Light Emitting Diodes Based on Nitride Nanowires. , 2017, , .		0
36	Short-wavelength, mid- and far-infrared intersubband absorption in nonpolar GaN/Al(Ga)N heterostructures. Japanese Journal of Applied Physics, 2016, 55, 05FG05.	1.5	9

3

#	Article	IF	CITATIONS
37	Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness. Applied Physics Letters, 2016, 108, .	3.3	24
38	GaN Rods Grown on Si by SAG-HVPE toward GaN HVPE/InGaN MOVPE Core/Shell Structures. Crystal Growth and Design, 2016, 16, 2509-2513.	3.0	8
39	InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Nanotechnology, 2016, 27, 195704.	2.6	19
40	Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26198-26206.	8.0	66
41	Spontaneous formation of GaN/AlN core–shell nanowires on sapphire by hydride vapor phase epitaxy. Journal of Crystal Growth, 2016, 454, 1-5.	1.5	5
42	Self-catalyzed growth of GaAs nanowires on silicon by HVPE. , 2016, , .		1
43	Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography. Nanoscale Research Letters, 2016, 11, 461.	5.7	17
44	Chemical composition fluctuations and strain relaxation in InGaN nanowires: The role of the metal/nitrogen flux ratio. Materials Science in Semiconductor Processing, 2016, 55, 79-84.	4.0	8
45	Interfacial chemistry in a ZnTe/CdSe superlattice studied by atom probe tomography and transmission electron microscopy strain measurements. Journal of Microscopy, 2016, 262, 178-182.	1.8	10
46	Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors. ACS Photonics, 2016, 3, 597-603.	6.6	89
47	Effect of doping on the far-infrared intersubband transitions in nonpolar <i>m</i> -plane GaN/AlGaN heterostructures. Nanotechnology, 2016, 27, 145201.	2.6	16
48	Nonpolar <i>m</i> -plane GaN/AlGaN heterostructures with intersubband transitions in the 5–10 THz band. Nanotechnology, 2015, 26, 435201.	2.6	26
49	Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography. Applied Physics Letters, 2015, 106, 051904.	3.3	15
50	Investigation of Photovoltaic Properties of Single Core–Shell GaN/InGaN Wires. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21898-21906.	8.0	39
51	Intersubband transitions in nonpolar GaN/Al(Ga)N heterostructures in the short- and mid-wavelength infrared regions. Journal of Applied Physics, 2015, 118, 014309.	2.5	26
52	Flexible Light-Emitting Diodes Based on Vertical Nitride Nanowires. Nano Letters, 2015, 15, 6958-6964.	9.1	172
53	The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. Journal of Applied Physics, 2015, 117, .	2.5	55
54	Complete solid state lighting (SSL) line at CEA LETI. Proceedings of SPIE, 2014, , .	0.8	1

#	Article	lF	Citations
55	High-T _c Superconducting Cuprates, (Ce,Y) _s o _{2s<2} (Cu _{2.75} Mo _{0.25})O _{6+Î T_c-increase with apical Cu-O decrease at constant Cu-O planar distance. Journal of Physics: Conference Series, 2014, 507, 012031.}	:	2
56	Effect of the quantum well thickness on the performance of InGaN photovoltaic cells. Applied Physics Letters, 2014, 105, .	3.3	60
57	THz intersubband transitions in AlGaN/GaN multiâ€quantumâ€wells. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 761-764.	1.8	11
58	<i>M</i> -Plane GaN/InAlN Multiple Quantum Wells in Core–Shell Wire Structure for UV Emission. ACS Photonics, 2014, 1, 38-46.	6.6	42
59	Cu2ZnSn(S1â^xSex)4 thin films for photovoltaic applications: Influence of the precursor stacking order on the selenization process. Journal of Alloys and Compounds, 2014, 588, 310-315.	5.5	19
60	Pseudo-square AlGaN/GaN quantum wells for terahertz absorption. Applied Physics Letters, 2014, 105, 131106.	3.3	25
61	Ultralong and Defect-Free GaN Nanowires Grown by the HVPE Process. Nano Letters, 2014, 14, 559-562.	9.1	58
62	Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration. Applied Physics Express, 2014, 7, 032301.	2.4	18
63	High-quality NbN nanofilms on a GaN/AlN heterostructure. AIP Advances, 2014, 4, 107123.	1.3	11
64	Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications. Nanoscale Research Letters, 2013, 8, 61.	5.7	28
65	Optical properties of single ZnTe nanowires grown at low temperature. Applied Physics Letters, 2013, 103, .	3.3	20
66	Strain assisted inter-diffusion in GaN/AlN quantum dots. Journal of Applied Physics, 2013, 113, 034311.	2.5	14
67	Growth of II–VI ZnSe/CdSe nanowires for quantum dot luminescence. Journal of Crystal Growth, 2013, 378, 233-237.	1.5	7
68	Growth, structural and optical properties of AlGaN nanowires in the whole composition range. Nanotechnology, 2013, 24, 115704.	2.6	65
69	InGaN/GaN multipleâ€quantum well heterostructures for solar cells grown by MOVPE: case studies. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 350-354.	0.8	7
70	Intrinsic limits governing MBE growth of Ga-assisted GaAs nanowires on Si(111). Journal of Crystal Growth, 2013, 364, 118-122.	1.5	28
71	Probing alloy composition gradient and nanometer-scale carrier localization in single AlGaN nanowires by nanocathodoluminescence. Nanotechnology, 2013, 24, 305703.	2.6	24
72	Hydride VPE: the unexpected process for the fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure. , $2013, \dots$		0

#	Article	IF	Citations
73	Overdoped cuprates with high-temperature superconducting transitions. APL Materials, $2013,1,.$	5.1	11
74	Terahertz absorbing AlGaN/GaN multi-quantum-wells: Demonstration of a robust 4-layer design. Applied Physics Letters, 2013, 103, 091108.	3.3	27
75	Structural and optical properties of Al <i>></i> >>>Ca _{1–<i>×</i>} N nanowires. Physica Status Solidi - Rapid Research Letters, 2013, 7, 868-873.	2.4	32
76	Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 08JH05.	1.5	22
77	Advanced semiconductor characterization with aberration corrected electron microscopes. Journal of Physics: Conference Series, 2013, 471, 012001.	0.4	3
78	Paramagnetic shift in thermally annealed CdxZn1â^'xSe quantum dots. New Journal of Physics, 2012, 14, 043038.	2.9	11
79	Catalyst-assisted hydride vapor phase epitaxy of GaN nanowires: exceptional length and constant rod-like shape capability. Nanotechnology, 2012, 23, 405601.	2.6	30
80	Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology, 2012, 23, 135703.	2.6	67
81	$\langle i \rangle$ In situ $\langle i \rangle$ study of self-assembled GaN nanowires nucleation on Si(111) by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2012, 100, .	3.3	47
82	Exciton-phonon coupling efficiency in CdSe quantum dots embedded in ZnSe nanowires. Physical Review B, $2012, 85, .$	3.2	9
83	Extraction of the homogeneous linewidth of the spectrally diffusing line of a CdSe/ZnSe quantum dot embedded in a nanowire. Physical Review B, 2012, 86, .	3.2	6
84	Ultrafast Room Temperature Single-Photon Source from Nanowire-Quantum Dots. Nano Letters, 2012, 12, 2977-2981.	9.1	70
85	Growth, structural and optical properties of GaN/AlN and GaN/GalnN nanowire heterostructures. Physics Procedia, 2012, 28, 5-16.	1.2	4
86	Catalyst-free growth of high-optical quality GaN nanowires by metal-organic vapor phase epitaxy. Applied Physics Letters, 2011, 99, .	3.3	38
87	M-Plane Core–Shell InGaN/GaN Multiple-Quantum-Wells on GaN Wires for Electroluminescent Devices. Nano Letters, 2011, 11, 4839-4845.	9.1	186
88	Nordgauite, MnAl ₂ (PO ₄) ₂ (F,OH) ₂ A·5H ₂ O, a new mineral from the Hagendorf-SÃ1/4d pegmatite, Bavaria, Germany: description and crystal structure. Mineralogical Magazine, 2011, 75, 269-278.	1.4	15
89	Subnanosecond spectral diffusion of a single quantum dot in a nanowire. Physical Review B, 2011, 84, .	3.2	44
90	Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature. Journal of Crystal Growth, 2011, 334, 177-180.	1.5	48

#	Article	IF	Citations
91	Towards vertical coupling of CdTe/ZnTe quantum dots formed by a high temperature tellurium induced process. Journal of Crystal Growth, 2011, 335, 28-30.	1.5	27
92	Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111). Physical Review B, 2011, 84, .	3.2	95
93	Polarity determination in ZnSe nanowires by HAADF STEM. Journal of Physics: Conference Series, 2011, 326, 012044.	0.4	4
94	Measuring two dimensional strain state of AlN quantum dots in GaN nanowires by nanobeam electron diffraction. Journal of Physics: Conference Series, 2011, 326, 012047.	0.4	4
95	Vertical stacking of CdTeâ^•ZnTe quantum dots formed by a fast tellurium induced process. , 2011, , .		0
96	Insertion of CdSe quantum dots in ZnSe nanowires: MBE growth and microstructure analysis. Journal of Crystal Growth, 2011, 323, 330-333.	1.5	4
97	Insertion of CdSe quantum dots in ZnSe nanowires: Correlation of structural and chemical characterization with photoluminescence. Journal of Applied Physics, 2011, 110, .	2.5	10
98	Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE. Nanotechnology, 2011, 22, 075601.	2.6	97
99	Structural properties of GaN nanowires and GaN/AlN insertions grown by molecular beam epitaxy. Journal of Physics: Conference Series, 2010, 209, 012010.	0.4	5
100	Single photons from single CdSe quantum dot embedded in ZnSe nanowire. International Journal of Nanotechnology, 2010, 7, 686.	0.2	1
101	Elastic strain relaxation in GaN/AlN nanowire superlattice. Physical Review B, 2010, 81, .	3.2	47
102	Influence of thermal annealing on the structural and optical properties of GaN/AlN quantum dots. Physica Status Solidi (B): Basic Research, 2010, 247, 1675-1678.	1.5	5
103	Epitaxial growth of ZnSe and ZnSe/CdSe nanowires on ZnSe. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1526-1529.	0.8	12
104	Growth mechanism of catalystâ€free [0001] GaN and AlN nanowires on Si by molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2246-2248.	0.8	7
105	Subnanosecond spectral diffusion measurement using photon correlation. Nature Photonics, 2010, 4, 696-699.	31.4	123
106	Optical spectroscopy of cubic GaN in nanowires. Applied Physics Letters, 2010, 97, .	3.3	19
107	Reversed polarized emission in highly strained <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>a</mml:mi></mml:math> -plane GaN/AIN multiple quantum wells. Physical Review B. 2010. 82	3.2	8
108	Characterization of spin-state tuning in thermally annealed semiconductor quantum dots. Physical Review B, 2010, 82, .	3.2	12

#	Article	IF	CITATIONS
109	Quantum Transport in GaN/AlN Double-Barrier Heterostructure Nanowires. Nano Letters, 2010, 10, 3545-3550.	9.1	71
110	Ordering of Pd ²⁺ and Pd ⁴⁺ in the Mixed-Valent Palladate KPd ₂ O ₃ . Inorganic Chemistry, 2010, 49, 1295-1297.	4.0	19
111	The structural properties of GaN/AlN core–shell nanocolumn heterostructures. Nanotechnology, 2010, 21, 415702.	2.6	73
112	Coulsellite, CaNa3AlMg3F14, a rhombohedral pyrochlore with 1:3 ordering in both A and B sites, from the Cleveland Mine, Tasmania, Australia. American Mineralogist, 2010, 95, 736-740.	1.9	9
113	Molecular beam epitaxy growth and optical properties of AlN nanowires. Applied Physics Letters, 2010, 96, .	3.3	49
114	Quantum dot to quantum wire transition ofm-plane GaN islands. Physical Review B, 2009, 79, .	3.2	3
115	GaN/AlGaN intersubband optoelectronic devices. New Journal of Physics, 2009, 11, 125023.	2.9	84
116	The structural properties of GaN insertions in GaN/AlN nanocolumn heterostructures. Nanotechnology, 2009, 20, 295706.	2.6	20
117	Midinfrared intersubband absorption in GaN/AlGaN superlattices on Si(111) templates. Applied Physics Letters, 2009, 95, .	3.3	44
118	CdSe quantum dot in a ZnSe nanowire as an efficient source of single photons. Physica Status Solidi (B): Basic Research, 2009, 246, 846-849.	1.5	0
119	Typeâ€II excitons in ZnTe/ZnSe quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 857-859.	0.8	5
120	Strain effects in GaN/AlN short-period superlattices for intersubband optoelectronics. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S549-S552.	0.8	6
121	Elaboration and optical properties of type-Il ZnTe on ZnSe heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 85-87.	3.5	3
122	Type-II ZnTe/ZnSe quantum dots and quantum wells. Superlattices and Microstructures, 2009, 46, 253-257.	3.1	6
123	Bright CdSe quantum dot inserted in single ZnSe nanowires. Microelectronics Journal, 2009, 40, 253-255.	2.0	2
124	CdSe quantum dots in ZnSe nanowires as efficient source for single photons up to 220K. Journal of Crystal Growth, 2009, 311, 2123-2127.	1.5	9
125	Growth and properties of defectâ€free ZnSe nanowires and nanoneedles. Physica Status Solidi (B): Basic Research, 2009, 246, 812-815.	1.5	3
126	Exciton dynamics of a single quantum dot embedded in a nanowire. Physical Review B, 2009, 80, .	3.2	47

#	Article	IF	Citations
127	Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires. Physical Review B, 2009, 80, .	3.2	94
128	Strain relaxation in short-period polar GaN/AlN superlattices. Journal of Applied Physics, 2009, 106, 013526.	2.5	56
129	Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy. Nanotechnology, 2009, 20, 415602.	2.6	83
130	A CdSe quantum dot in a ZnSe nanowire as an efficient high-temperature single-photon source. , 2009, , .		0
131	New germanates RCrGeO5 (R=Nd–Er, Y): Synthesis, structure, and properties. Journal of Solid State Chemistry, 2008, 181, 2433-2441.	2.9	11
132	A High-Temperature Single-Photon Source from Nanowire Quantum Dots. Nano Letters, 2008, 8, 4326-4329.	9.1	104
133	Exciton and Biexciton Luminescence from Single GaN/AlN Quantum Dots in Nanowires. Nano Letters, 2008, 8, 2092-2096.	9.1	97
134	Near infrared quantum cascade detector in GaNâ^•AlGaNâ^•AlN heterostructures. Applied Physics Letters, 2008, 92, .	3.3	116
135	High-speed operation of GaN/AlGaN quantum cascade detectors at λâ‰^1.55â€,μm. Applied Physics Letters, 20 93, .	008.3	52
136	Defect-free ZnSe nanowire and nanoneedle nanostructures. Applied Physics Letters, 2008, 93, 143106.	3.3	34
137	Negative magnetopolarization in thermally annealed self-assembled quantum dots. Physical Review B, 2008, 77, .	3.2	11
138	Anisotropic strain state of the $[11\hat{A}^-00]$ GaN quantum dots and quantum wires. Journal of Applied Physics, 2008, 104, 063521.	2.5	3
139	Optical properties of m-plane GaN quantum dots and quantum wires. Journal of Applied Physics, 2008, 104, .	2.5	18
140	Measuring local lattice polarity in AlN and GaN by high resolution Z-contrast imaging: The case of (0001) and ($11\hat{A}$ -00) GaN quantum dots. Applied Physics Letters, 2008, 92, .	3.3	17
141	Molecular Beam Epitaxy Growth of ZnTe/ZnSe Type-II Quantum Dots. Journal of the Korean Physical Society, 2008, 53, 137-140.	0.7	0
142	CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions. Nanotechnology, 2007, 18, 265701.	2.6	9
143	Anisotropic strain relaxation in a-plane GaN quantum dots. Journal of Applied Physics, 2007, 101, 063541.	2.5	24
144	Self-assembly of CdSeâ^•ZnSe(001) quantum dot structures mediated by a tellurium cap layer. Applied Physics Letters, 2007, 91, 153110.	3.3	15

#	Article	IF	CITATIONS
145	Growth of m-plane GaN quantum wires and quantum dots on m-plane 6H-SiC. Journal of Applied Physics, 2007, 102, 074913.	2.5	18
146	Spin ladder compoundPb0.55Cd0.45V2O5: Synthesis and investigation. Physical Review B, 2007, 76, .	3.2	1
147	Anisotropic morphology of nonpolar a-plane GaN quantum dots and quantum wells. Journal of Applied Physics, 2007, 102, 074304.	2.5	37
148	PITTONGITE, A NEW TUNGSTATE WITH A MIXED-LAYER, PYROCHLORE HEXAGONAL TUNGSTEN BRONZE STRUCTURE, FROM VICTORIA, AUSTRALIA. Canadian Mineralogist, 2007, 45, 857-864.	1.0	8
149	CdSe quantum dot formation induced by amorphous Se. Surface Science, 2007, 601, 2664-2666.	1.9	0
150	Structural and optical properties of CdSe quantum dots induced by amorphous Se. Journal of Crystal Growth, 2007, 301-302, 281-284.	1.5	9
151	Chemical twinning of the pyrochlore structure in the system Bi2O3–Fe2O3–Nb2O5. Journal of Solid State Chemistry, 2007, 180, 158-166.	2.9	9
152	Inserting one single Mn ion into a quantum dot. Applied Physics Letters, 2006, 89, 193109.	3.3	43
153	Morphology of CdSe/ZnSe quantum dots grown by MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 938-941.	0.8	6
154	Tuning the magnetic properties of ZnCdSe/ZnSe quantum dots by thermal annealing. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3904-3907.	0.8	0
155	Inserting one single Mn ion into a quantum dot. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3992-3996.	0.8	4
156	Control of single spins in individual magnetic quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 3709-3718.	1.5	4
157	Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals. Journal of Solid State Chemistry, 2006, 179, 3860-3869.	2.9	21
158	Elastic and surface energies: Two key parameters for CdSe quantum dot formation. Applied Physics Letters, 2006, 88, 233103.	3.3	27
159	Synthesis and structure investigation of the Pb3V(PO4)3 eulytite. Journal of Solid State Chemistry, 2005, 178, 3715-3721.	2.9	20
160	Properties of Ga1â^'xMnxN Epilayers Grown by Molecular Beam Epitaxy. AIP Conference Proceedings, 2005, , .	0.4	0
161	Structure of LaCuO2.66: an oxidized delafossite compound containing hole-doped kagome planes of Cu2+ cations. Solid State Sciences, 2003, 5, 1095-1104.	3.2	25
162	Fe and Co Nanowires and Nanotubes Synthesized by Template Electrodeposition. Journal of the Electrochemical Society, 2003, 150, E468.	2.9	37

#	Article	IF	CITATIONS
163	Structure of heavy-metal sorbed birnessite: Part 2. Results from electron diffraction. American Mineralogist, 2002, 87, 1646-1661.	1.9	42
164	Surface quality studies of high-Tc superconductors of the Hg-, Tl- and HgxTl1â^'x-families: RBS and resonant C and O backscattering studies. Nuclear Instruments & Methods in Physics Research B, 2002, 190, 673-678.	1.4	1
165	The superconducting bismuth-based mixed oxides. Current Applied Physics, 2002, 2, 425-430.	2.4	3
166	PbMnO2.75â€"a high-pressure phase having a new type of crystallographic shear structure derived from perovskite. Journal of Solid State Chemistry, 2002, 169, 131-138.	2.9	39
167	Structure determination of oxide compounds by electron crystallography. Micron, 2001, 32, 473-479.	2.2	10
168	CaO–CuO system at high oxygen pressure: bulk synthesis and transport properties of Ca14Cu24O41. Physica C: Superconductivity and Its Applications, 2001, 351, 301-307.	1.2	4
169	Crystal structure of high-Tc related NdBaCuO2BO3: TEM and neutron powder diffraction study. Physica C: Superconductivity and Its Applications, 2001, 355, 119-125.	1.2	4
170	Effects of Re substitution on the structure and superconductivity of Cu1â^'xRexBa2YCu2Ow. Physica C: Superconductivity and Its Applications, 2001, 355, 267-277.	1.2	1
171	The Fine Structure of YCuO2+x Delafossite Determined by Synchrotron Powder Diffraction and Electron Microscopy. Journal of Solid State Chemistry, 2001, 156, 428-436.	2.9	39
172	SUPERCONDUCTING BISMUTHATES., 2000, , .		0
173	Crystal Growth and Structure of AlSr2YCu2O7. Journal of Solid State Chemistry, 2000, 149, 256-261.	2.9	5
174	Structure Determination of Sr1.25Bi0.75O3 and Sr0.4K0.6BiO3 as a Function of Temperature from Synchrotron X-Ray Powder Diffraction Data. Journal of Solid State Chemistry, 2000, 150, 316-323.	2.9	5
175	Synthesis and Characterization of New Phases: Sr3.75K1.75Bi3O12 and Sr3.1Na2.9Bi3O12. Journal of Solid State Chemistry, 2000, 152, 492-502.	2.9	4
176	Structural Characterization of the Engineered Scavenger Compound, H-Li2Ti3O7. Journal of Solid State Chemistry, 2000, 152, 546-553.	2.9	9
177	The incommensurate modulated structure of Sr14â^'xCaxC24O41 as a function of temperature and composition. Physica C: Superconductivity and Its Applications, 2000, 341-348, 479-480.	1.2	2
178	Reaction mechanism in the high-pressure synthesis of Hg-cuprates: an in-situ synchrotron diffraction study. Physica C: Superconductivity and Its Applications, 2000, 341-348, 577-578.	1.2	3
179	New reentrant superconducting-normal transition in $Sr1\hat{a}^{*}$ xKxBiO3 superconductor: magnetotransport and magnetization study. Physica C: Superconductivity and Its Applications, 2000, 341-348, 797-800.	1.2	4
180	Structural studies of new superconducting bismuthates (Sr,K)BiO3. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1813-1816.	1.2	6

#	Article	IF	CITATIONS
181	Magnetoresistance and thermoelectric power of Sr1â°xKxBiO3: a second family of BiO-based superconductors. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1861-1862.	1.2	1
182	Magnetic properties and magnetoresistance of the Ru-substitutedTl2Mn2â^'xRuxO7pyrochlore. Physical Review B, 2000, 61, 11637-11642.	3.2	4
183	Large oxygen-isotope effect inSr0.4K0.6BiO3:Evidence for phonon-mediated superconductivity. Physical Review B, 2000, 62, R11977-R11980.	3.2	5
184	Transport and magnetic properties of Tl2Mn2â^'xRuxO7 diluted system. Journal of Applied Physics, 1999, 85, 5405-5407.	2.5	3
185	High-pressure synchrotron-diffraction study of the superconducting spin-ladder compounds(Sr,M)14Cu24O41(M=Ca,Ba, Nd). Physical Review B, 1999, 59, 12048-12053.	3.2	12
186	Sr Substitution for Ba in Y(Ba1-xSrx)2Cu3O7-d at Varying d. International Journal of Modern Physics B, 1999, 13, 967-972.	2.0	0
187	Synthesis, structure and superconductivity of Hg0.75Mo0.25Ba2CuO4+δ. Physica C: Superconductivity and Its Applications, 1999, 325, 41-48.	1.2	5
188	Structure of non-phase-separated La2CuO4.03 studied by single-crystal neutron diffraction. Physica C: Superconductivity and Its Applications, 1999, 321, 103-107.	1.2	6
189	Magnetoresistance of Sr1â^'x K x BiO3: a second-family of bismuth-oxide-based superconductors. Journal of Low Temperature Physics, 1999, 117, 1205-1209.	1.4	5
190	A New Layered Bismuthate (Sr,K)3Bi2O7: Synthesis and Crystal Structure. Journal of Solid State Chemistry, 1999, 144, 405-408.	2.9	9
191	Carrier Density Dependence of Magnetoresistance inTl2Mn2â^'xRuxO7Pyrochlores. Physical Review Letters, 1999, 83, 2022-2025.	7.8	36
192	Magnetic and electric properties ofLa1â^ÎMnO3. Physical Review B, 1999, 59, 1304-1310.	3 . 2	96
193	Synthesis and transport properties of substituted Tl2Mn2O7 pyrochlore. Journal of Materials Chemistry, 1999, 9, 743-748.	6.7	8
194	OverdopedHg1a^'xAuxBa2Ca2Cu3O8+xand the origin of the intrinsic increase ofTcunder pressure in mercury cuprates. Physical Review B, 1998, 57, R5630-R5633.	3.2	15
195	Structural and electronic effects of Sr substitution for Ba inY(Ba1â^'xSrx)2Cu3Owat varyingw. Physical Review B, 1998, 58, 15208-15217.	3.2	66
196	AuBa2(Y1â^'x, Cax)Cu2O7: a new superconducting gold cuprate with Tc above 80 K. Physica C: Superconductivity and Its Applications, 1997, 276, 237-244.	1.2	19
197	Structural and physical properties of the (Cu,C,B)Ba2Canâ^1CunO2n+2+Ïf superconductors with Tc up to 130K under pressure. Physica C: Superconductivity and Its Applications, 1997, 282-287, 817-818.	1.2	0
198	Superconducting properties of the Mercury and Cu/C phases. Physica C: Superconductivity and Its Applications, 1997, 282-287, 857-858.	1.2	0

#	Article	IF	CITATIONS
199	New phases in the double-Hg layer system Hg2Ba2LnCu2O8-δ (LnNdGd, DyLu). Physica C: Superconductivity and Its Applications, 1997, 282-287, 899-900.	1.2	3
200	Au-1212: A new superconducting gold cuprate with Tc above 80 K. Physica C: Superconductivity and Its Applications, 1997, 282-287, 951-952.	1.2	3
201	Discovery of a second family of bismuth-oxide-based superconductors. Nature, 1997, 390, 148-150.	27.8	105
202	Synthesis, neutron diffraction study and cation substitutions in Srnâ^'1Cun+1O2n (n = 3, 5). Physica C: Superconductivity and Its Applications, 1997, 276, 139-146.	1.2	15
203	High pressure synthesis and structure of the superconducting mercury cuprates (Hg1â°'xMx)Ba2Canâ°'1CunO2+2n+ \ddot{l} — with M = C, S Physica C: Superconductivity and Its Applications, 1997, 282-287, 65-68.	1.2	3
204	Electron microscopy study of the Ba and Sr mercury-based superconductors HgmM2(Y,Ca)nâ^1CunOy, with MBa or Sr and m=1,2. Physica C: Superconductivity and Its Applications, 1997, 282-287, 895-896.	1.2	2
205	Large enhancement of Tc (50K) by applying high pressure in the Hg-2212 superconductor. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1167-1168.	1.2	5
206	50 K enhancement of Tc by pressure in the Hg-2212 superconductor. Solid State Communications, 1997, 102, 1-5.	1.9	15
207	Synthesis, Structural, and Magnetic Characterization of New Hg2Ba2LnCu2O8â~Î Phases withLn=Nd–Gd, Dy–Lu. Journal of Solid State Chemistry, 1997, 132, 163-172.	2.9	4
208	High-pressure synthesis and heat treatments of the HgBa2Ca4Cu5O12+ \hat{l} and HgBa2Ca5Cu6O14+ \hat{l} phases. Physica C: Superconductivity and Its Applications, 1996, 256, 1-7.	1.2	38
209	Electron Microscopy Study of KxBa1â^'xNbO3. Journal of Solid State Chemistry, 1996, 123, 236-242.	2.9	3
210	The influence of pressure on the superconducting properties of the (CuxClâ^'x)Ba2Canâ^'1CunOy family of HTSC materials. Solid State Communications, 1996, 97, 131-135.	1.9	12
211	Enhancement of Tc of CyCu1â^'yBa2Ca2Cu3Ox from 67 K to 120 K by reduction treatments. Physica C: Superconductivity and Its Applications, 1996, 266, 215-222.	1.2	40
212	Gold substitution in mercury cuprate superconductors. Physica C: Superconductivity and Its Applications, 1996, 262, 151-158.	1.2	21
213	Crystal structure of the double-hg-layer copper oxide superconductor (Hg, Pr)2Ba2(Y, Ca)Cu2O8â~δas a function of doping. Journal of Physics and Chemistry of Solids, 1995, 56, 1471-1478.	4.0	17
214	Synthesis of alkali-substituted Sr,Cu oxycarbonates superconductivity in Sr2â^'xKxCuO2CO3 (0.25 ⩽ x â©⅓2)	Ţį ĘTQq0	0 0 rgBT /O
215	Cation and anion disorder in HgBa2Canâ^1CunO2n+2+δ. Journal of Superconductivity and Novel Magnetism, 1995, 8, 507-510.	0.5	5
216	Suppression of superconductivity in Hg-1223 and Hg-1234 by partial replacement of Hg by carbon. Physica C: Superconductivity and Its Applications, 1995, 243, 222-232.	1.2	28

#	Article	IF	Citations
217	Synthesis, structure, and resistivity properties of K1 â^² xBaxNbO3 (0.2 ≤ ≤0.5) and K0.5Sr0.5NbO3. Materials Research Bulletin, 1995, 30, 1379-1386.	5.2	24
218	Zero resistance around 250 K in superconducting Hg-compounds?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 184, 215-217.	2.1	27
219	Rebuttal to the comment by Zhu et al. on "zero resistance around 250 K in superconducting Hg compounds?― Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 186, 366-367.	2.1	3
220	The superconducting HgBa2Can-1CunO2n+2+δhomologous series. Physica B: Condensed Matter, 1994, 197, 570-578.	2.7	25
221	A new HTSC family: the copper analogs of the single-layer Hg or Tl copper oxide superconductors. Physica C: Superconductivity and Its Applications, 1994, 222, 52-56.	1.2	92
222	The superconducting "copper/carbonate cuprates―An electron microscopy study. Physica C: Superconductivity and Its Applications, 1994, 231, 103-108.	1.2	43
223	Optimization of superconductivity in the high-pressure Sr-Ca-Cu-O system. Physica C: Superconductivity and Its Applications, 1994, 228, 63-72.	1.2	20
224	Neutron powder diffraction study of the crystal structure of HgBa2Ca4Cu5O12+δat room temperature and at 10 K. Physica C: Superconductivity and Its Applications, 1994, 227, 1-9.	1.2	77
225	Atomic structure and defect structure of the superconducting HgBa2Canâ^1CunO2n+2+Î homologous series. Physica C: Superconductivity and Its Applications, 1994, 223, 219-226.	1.2	37
226	Mercury-based copper mixed-oxide superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 21-24.	1.2	23
227	High pressure synthesis and properties of the HgBa2Can-1CunO2n+2+ \hat{l} (n=1 \hat{a} - \hat{a} - \hat{b}) superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 146-149.	1.2	20
228	Synthesis, crystal structure and properties of Hg2Ba2(Y, Ca) Cu2O8â^Î: the first cuprate superconductor containing a double mercury-oxygen layer. Physica C: Superconductivity and Its Applications, 1994, 235-240, 925-926.	1.2	10
229	Electron microscopy study of the CuxC1â^'xBanâ^'1CunOy superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 993-994.	1.2	4
230	Resistive and magnetic anomalies in high Tc cuprates. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1545-1546.	1.2	5
231	Pressure effects in high temperature superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2093-2094.	1.2	15
232	Structural Aspects of the Crystallographic-Magnetic Transition in LaVO3 around 140 K. Journal of Solid State Chemistry, 1993, 106, 253-270.	2.9	171
233	Synthesis and neutron powder diffraction study of the superconductor HgBa2CaCu2O6+ \hat{l} ′ before and after heat treatment. Physica C: Superconductivity and Its Applications, 1993, 218, 348-355.	1.2	87
234	The synthesis and characterization of the HgBa2Ca2Cu3O8+ \hat{l} and HgBa2Ca3Cu4O10+ \hat{l} phases. Physica C: Superconductivity and Its Applications, 1993, 215, 1-10.	1.2	246

#	Article	IF	CITATIONS
235	Structural analysis of the charge transfer mechanism in the superconducting compounds Pb2Sr2Y1â^'xCaxCu3O8+δ. Journal of Alloys and Compounds, 1993, 195, 169-172.	5.5	3
236	Evolution of structure and superconductivity with lithium content in Li1â^'xTi2O4. Journal of Alloys and Compounds, 1993, 195, 81-84.	5. 5	15
237	Evidence by x-ray diffraction for two apical oxygen sites in a copper-deficientYBa2Cu2.78O7crystal. Physical Review B, 1993, 47, 3465-3468.	3.2	14
238	Synthesis and crystal structure of BaSrCuO2+x·CO3. Physica C: Superconductivity and Its Applications, 1992, 195, 335-344.	1.2	38
239	High pressure synthesis and structural study of R2CuO4 compounds with R = Y, Tb, Dy, Ho, Er, Tm. Physica C: Superconductivity and Its Applications, 1992, 193, 178-188.	1.2	37
240	Electrochemical synthesis and characterization of superconducting Ba1â^xKxBiO3 single crystals. Solid State Communications, 1991, 78, 967-969.	1.9	25
241	The structure of superconducting Pb2Sr2Y0.73Ca0.27Cu3O8 by single-crystal neutron diffraction. Physica C: Superconductivity and Its Applications, 1991, 175, 293-300.	1.2	27
242	High temperature structure of BaBiO3 by single-crystal neutron diffraction. Physica C: Superconductivity and Its Applications, 1991, 185-189, 2723-2724.	1.2	2
243	High pressure synthesis and structural study of R2CUO4 compounds with R=Y,TB,DY,HO,ER,TM. Physica C: Superconductivity and Its Applications, 1991, 185-189, 539-540.	1.2	15
244	Low-temperature phase structure of the Tâ^—-phase compound (La, Tb, Pb)2CuO4. Physica C: Superconductivity and Its Applications, 1991, 185-189, 541-542.	1.2	0
245	The structure of superconducting Pb2Sr2Y1â^'xCaxCu3O8 by single crystal neutron diffraction data. Physica C: Superconductivity and Its Applications, 1991, 185-189, 635-636.	1.2	3
246	The structure of BaK0.03Bi0.97O3 by single-crystal X-ray diffraction. Physica C: Superconductivity and Its Applications, 1991, 185-189, 697-698.	1.2	3
247	Variation of Tc as a function of the stoichiometry in Ba1â°'xKxBiO3 single crystals. Physica C: Superconductivity and Its Applications, 1991, 185-189, 707-708.	1.2	2
248	Structure determination of a new perovskite phase in the BaKBiNaO system. Journal of Solid State Chemistry, 1991, 93, 63-68.	2.9	8
249	The crystal structure of Ba (Bi0.977K0.023)O3 by single-crystal X-ray diffraction. Physica C: Superconductivity and Its Applications, 1991, 181, 325-330.	1.2	2
250	Two-phase structural refinement of La2CuO4.032 at 15 K. Physica C: Superconductivity and Its Applications, 1990, 170, 87-94.	1.2	130
251	Pb3Sr3Cu3O8+Î'Cl: A new layered copper oxychloride. Physica C: Superconductivity and Its Applications, 1990, 167, 67-74.	1.2	36
252	Temperature dependent single crystal X-ray diffraction study of the Tâ^— phase compound (La1.20Tb0.72Pb0.08)CuO4. Journal of the Less Common Metals, 1990, 164-165, 792-799.	0.8	2

#	Article	IF	CITATIONS
253	Oxygen stoichiometry, structure and superconductivity in the superconducting series Pb2Sr2Y1â^xCaxCu3O8+â^,. Journal of the Less Common Metals, 1990, 164-165, 816-823.	0.8	1
254	Oxygen †disorder†and the structures of high-Tc superconductors. Physica B: Condensed Matter, 1989, 156-157, 874-876.	2.7	6
255	Electron beam induced superstructure in Ba1â^'xKxBiO3â^'y. Physica C: Superconductivity and Its Applications, 1989, 157, 228-236.	1.2	26
256	Electron microscopy of superconducting Pb2Sr2Y1â^'xCaxCu3O8. Physica C: Superconductivity and Its Applications, 1989, 157, 509-514.	1.2	37
257	The crystal structure of superconducting La2CuO4.032 by neutron diffraction. Physica C: Superconductivity and Its Applications, 1989, 158, 183-191.	1.2	214
258	Synthesis and superconductivity of Ba 0.6 K 0.4 BiO 3â^'y. Physica C: Superconductivity and Its Applications, 1989, 162-164, 935-936.	1.2	1
259	Structural changes and oxygen stoichiometry in Pb 2 Sr 2 Y $1\hat{a}^2$ x Ca x Cu 3 O $8+\hat{l}^2$. Physica C: Superconductivity and Its Applications, 1989, 162-164, 53-54.	1.2	14
260	Structural aspects of the phase separation in La 2 CuO 4.032. Physica C: Superconductivity and Its Applications, 1989, 162-164, 57-58.	1.2	17
261	Oxygen stoichiometry and superconductivity in YBa 2 Cu 3 O 6+x and Pb 2 Sr 2 Y 1â^'x Ca x O 8+Î'. Physica C: Superconductivity and Its Applications, 1989, 162-164, 281-284.	1.2	18
262	Electron microscopy study of the new high Tc phase Y2Ba4Cu7O14+x. Solid State Communications, 1989, 70, 275-278.	1.9	25
263	Nonstoichiometry and reactivity of Ba2YCu3O7â^î³. Solid State Ionics, 1989, 32-33, 1056-1063.	2.7	4
264	Order-disorder and superconductivity in Tlî—,Baî—,Cuî—,O and lead-substituted Biî—,Srî—,Caî—,Cuî—,O compounds Journal of the Less Common Metals, 1989, 150, 109-115.	S. _{0.8}	3
265	A homologous series based on YBaCuO, Ba16Y8Cu24O56 â^ m (0 â \odot ½ m â \odot ½8, m even). Journal of the Less Common Metals, 1989, 150, 117-127.	0.8	7
266	Two new bulk superconducting phases in the Y-Ba-Cu-O system: YBa2Cu3.5O7 + x (Tc â‰^ 40 K) and YBa2Cu4O8 + x (Tc â‰^ 80 K). Journal of the Less Common Metals, 1989, 150, 129-137.	0.8	64
267	Relations Between Structure and Tc In 123,124 and Thallium Oxide Superconductors. Materials Research Society Symposia Proceedings, 1989, 156, 283.	0.1	2
268	Powder X-ray and neutron diffraction study of the superconductor Bi2Sr2CaCu2O8. Physica C: Superconductivity and Its Applications, 1988, 153-155, 623-624.	1.2	102
269	A structural mechanism for the reduction of Ba2YCu3O7-x. Physica C: Superconductivity and Its Applications, 1988, 153-155, 956-957.	1.2	7
270	Superstructure of the superconductor Bi2Sr2CaCu2O8 by high resolution electron microscopy. Physica C: Superconductivity and Its Applications, 1988, 153-155, 619-620.	1.2	46

#	Article	IF	Citations
271	Superstructure of the superconductor Bi2Sr2CaCu2O8 by high-resolution electron microscopy. Nature, 1988, 333, 53-54.	27.8	77
272	Structure determination of the new high-temperature superconductor Y2Ba4Cu7O14+x. Nature, 1988, 334, 596-598.	27.8	290
273	Non-stoichiometry and reactivity of YBaCuO. Solid State Ionics, 1988, 26, 147.	2.7	0
274	Bismuth valence order-disorder study in BaBiO3 by powder neutron diffraction. Solid State Communications, 1988, 65, 1363-1369.	1.9	122
275	Oxygen vacancy ordering in Ba2YCu3O7â^'x around x= 0.5. Solid State Communications, 1988, 65, 283-286.	1.9	136
276	A note on the symmetry and Bi valence of the superconductor Bi2Sr2Ca1Cu2O8. Physica C: Superconductivity and Its Applications, 1988, 156, 189-192.	1.2	156
277	Oxygen vacancy ordering, twinning and Cu substitution in YBa2Cu3O6+x. Physica C: Superconductivity and Its Applications, 1988, 153-155, 582-585.	1.2	49
278	A family of non-stoichiometric phases based on Ba2YCu3O7â^Î^(0â‰韓3‰彙). Physica C: Superconductivity and Its Applications, 1988, 156, 455-460.	1.2	67
279	NEW SUPERCONDUCTING OXIDES IN THE Bi-Sr-Ca-Cu-O SYSTEM: MAGNETIC MEASUREMENTS AND STRUCTURAL DETERMINATION. Journal De Physique Colloque, 1988, 49, C8-2111-C8-2112.	0.2	O
280	Crystal structure of Y0.9Ba2.1Cu3O6, a compound related to the high-Tc superconductor YBa2Cu3O7. Nature, 1987, 327, 687-689.	27.8	92
281	Structure of the 100 K Superconductor Ba ₂ YCu ₃ O ₇ between (5) Tj ETC	Qq1 _{.0} 1 0.78	34314 rgBT
282	Oxygen-vacancy ordering in theBa2YCu3O7â^'x(0â‰魔爺‰孽) superconducting system. Physical Review B, 1987, 36, 7118-7120.	3.2	116
283	Twinning in Ba2YCu3O6+x single crystals. Solid State Communications, 1987, 64, 1349-1352.	1.9	44
284	Structures of superconducting Ba2YCu3O7-ϗ and semiconducting Ba2YCu3O6 between 25°C and 750°C. Solid State Communications, 1987, 64, 301-307.	1.9	109
285	Oxygen vacancy ordering and non stoichiometry in the Ba 2 YCu 3 O 7â^x superconductors. Materials Research Bulletin, 1987, 22, 1685-1693.	5.2	72
286	Variations of stoichiometry and cell symmetry in YBa2Cu3O7â^'x with temperature and oxygen pressure. Nature, 1987, 327, 306-308.	27.8	146
287	The determination of the Bi valence state in BaBiO3 by neutron powder diffraction data. Solid State Communications, 1985, 56, 829-831.	1.9	58
288	Oxygen vacancy ordering in the BaBiO3â°'y system. Solid State Communications, 1985, 56, 833-835.	1.9	51