Mari Moora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4703096/publications.pdf

Version: 2024-02-01

	38742	26613
12,529	50	107
citations	h-index	g-index
130	130	12416
docs citations	times ranked	citing authors
	citations 130	12,529 50 citations h-index 130 130

#	Article	IF	CITATIONS
1	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	8.7	1,031
2	The online database Maarj <i>AM</i> reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist, 2010, 188, 223-241.	7.3	857
3	Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews, 2012, 87, 111-127.	10.4	717
4	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	8.7	666
5	Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 2015, 349, 970-973.	12.6	644
6	Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 2014, 506, 47-51.	27.8	505
7	Largeâ€scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184, 424-437.	7.3	481
8	Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology, 2006, 94, 778-790.	4.0	470
9	Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349, 302-305.	12.6	315
10	Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 2013, 23, 411-430.	2.8	280
11	IS SMALL-SCALE SPECIES RICHNESS LIMITED BY SEED AVAILABILITY OR MICROSITE AVAILABILITY?. Ecology, 2000, 81, 3274-3282.	3.2	276
12	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	10.4	259
13	Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203, 233-244.	7.3	256
14	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481.	9.5	200
15	Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiology Ecology, 2011, 78, 103-115.	2.7	183
16	DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany, 2014, 92, 135-147.	1.0	170
17	Species abundance distributions and richness estimations in fungal metagenomics - lessons learned from community ecology. Molecular Ecology, 2011, 20, 275-285.	3.9	158
18	Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology, 2013, 94, 1389-1399.	3.2	150

#	Article	IF	CITATIONS
19	Communities of Arbuscular Mycorrhizal Fungi Detected in Forest Soil Are Spatially Heterogeneous but Do Not Vary throughout the Growing Season. PLoS ONE, 2012, 7, e41938.	2.5	150
20	Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytologist, 2003, 160, 581-593.	7.3	149
21	High diversity of arbuscular mycorrhizal fungi in a boreal herbâ€rich coniferous forest. New Phytologist, 2008, 179, 867-876.	7.3	149
22	Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 2011, 189, 366-370.	7.3	149
23	Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodiversity and Conservation, 2010, 19, 2791-2821.	2.6	146
24	Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology, 2014, 90, 609-621.	2.7	138
25	Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. Journal of Biogeography, 2011, 38, 1305-1317.	3.0	137
26	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
27	Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia, 1996, 108, 79-84.	2.0	118
28	Host preference and network properties in biotrophic plant–fungal associations. New Phytologist, 2018, 217, 1230-1239.	7.3	107
29	Plant species richness belowground: higher richness and new patterns revealed by nextâ€generation sequencing. Molecular Ecology, 2012, 21, 2004-2016.	3.9	105
30	Fine-root traits in the global spectrum of plant form and function. Nature, 2021, 597, 683-687.	27.8	102
31	Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytologist, 2017, 213, 380-390.	7. 3	96
32	Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Functional Ecology, 2004, 18, 554-562.	3.6	93
33	Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany, 2014, 92, 277-285.	1.0	86
34	Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. Journal of Ecology, 2018, 106, 254-264.	4.0	86
35	Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology and Biogeography, 2017, 26, 690-699.	5.8	84
36	Nonâ€random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Molecular Ecology, 2019, 28, 365-378.	3.9	81

#	Article	IF	Citations
37	Mycorrhizal status helps explain invasion success of alien plant species. Ecology, 2017, 98, 92-102.	3.2	77
38	Mycorrhizal traits and plant communities: perspectives for integration. Journal of Vegetation Science, 2014, 25, 1126-1132.	2.2	76
39	Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biology and Biochemistry, 2016, 97, 63-70.	8.8	73
40	Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications, 2022, 13 , 1430 .	12.8	72
41	Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist, 2020, 226, 1117-1128.	7.3	69
42	The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytologist, 2018, 220, 1236-1247.	7.3	68
43	Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology, 2016, 92, fiw097.	2.7	67
44	Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytologist, 2017, 216, 227-238.	7.3	66
45	Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of ⟨i⟩Rhizophagus irregularis⟨ i⟩ and ⟨i⟩Gigaspora margarita⟨ i⟩ is high and isolateâ€dependent. Molecular Ecology, 2016, 25, 2816-2832.	3.9	64
46	Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback. New Phytologist, 2022, 234, 1929-1944.	7.3	63
47	Soil Nutrient Content Influences the Abundance of Soil Microbes but Not Plant Biomass at the Small-Scale. PLoS ONE, 2014, 9, e91998.	2.5	60
48	Arbuscular Mycorrhizal Fungal Networks Vary throughout the Growing Season and between Successional Stages. PLoS ONE, 2013, 8, e83241.	2.5	58
49	Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 2017, 27, 761-773.	2.8	58
50	Plant Coexistence in the Interactive Environment: Arbuscular Mycorrhiza Should Not Be out of Mind. Oikos, 1997, 78, 202.	2.7	57
51	Soil seed bank and vegetation in mixed coniferous forest stands with different disturbance regimes. Forest Ecology and Management, 2007, 250, 71-76.	3.2	56
52	Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME Journal, 2018, 12, 2211-2224.	9.8	55
53	Clonal mobility and its implications for spatio-temporal patterns of plant communities: what do we need to know next?. Oikos, 2010, 119, 802-806.	2.7	52
54	Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along management gradient on the growth of forest understorey plant species. Soil Biology and Biochemistry, 2009, 41, 2141-2146.	8.8	49

#	Article	IF	CITATIONS
55	Spatial pattern and species richness of boreonemoral forest understorey and its determinants—A comparison of differently managed forests. Forest Ecology and Management, 2007, 250, 64-70.	3.2	47
56	Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. Journal of Vegetation Science, 2016, 27, 89-99.	2.2	45
57	Impact of alien pines on local arbuscular mycorrhizal fungal communities—evidence from two continents. FEMS Microbiology Ecology, 2016, 92, fiw073.	2.7	41
58	Dispersal of arbuscular mycorrhizal fungi and plants during succession. Acta Oecologica, 2016, 77, 128-135.	1.1	41
59	Biodiversity and ecosystem functioning: It is time for dispersal experiments. Journal of Vegetation Science, 2006, 17, 543-547.	2.2	40
60	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	5.8	39
61	Are invaders disturbanceâ€limited? Conservation of mountain grasslands in Central Argentina. Applied Vegetation Science, 2002, 5, 195-202.	1.9	38
62	Monitoring of Biological Diversity: a Common-Ground Approach. Conservation Biology, 2007, 21, 313-317.	4.7	38
63	Plant species distributions along environmental gradients: do belowground interactions with fungi matter?. Frontiers in Plant Science, 2013, 4, 500.	3.6	38
64	Arbuscular mycorrhizal fungal communities in forest plant roots are simultaneously shaped by host characteristics and canopy-mediated light availability. Plant and Soil, 2017, 410, 259-271.	3.7	38
65	Missing nodes and links in mycorrhizal networks. New Phytologist, 2012, 194, 304-306.	7.3	37
66	Arbuscular Mycorrhizae and Plant–Plant Interactions. , 2010, , 79-98.		36
67	Title is missing!. Plant Ecology, 2001, 157, 205-213.	1.6	35
68	Temperate forest understorey species performance is altered by local arbuscular mycorrhizal fungal communities from stands of different successional stages. Plant and Soil, 2012, 356, 331-339.	3.7	32
69	Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities. Global Change Biology, 2018, 24, 2649-2659.	9.5	32
70	Misdiagnosis and uncritical use of plant mycorrhizal data are not the only elephants in the room. New Phytologist, 2019, 224, 1415-1418.	7.3	32
71	Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 78-88.	2.7	30
72	Vegetation Change in Boreonemoral Forest during Succession — Trends in Species Composition, Richness and Differentiation Diversity. Annales Botanici Fennici, 2009, 46, 326-335.	0.1	29

#	Article	IF	CITATIONS
73	Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS ONE, 2020, 15, e0233878.	2.5	29
74	Understory plant diversity is related to higher variability of vegetative mobility of coexisting species. Oecologia, 2009, 159, 355-361.	2.0	28
75	Pollinator community responses to the spatial population structure of wild plants: A pan-European approach. Basic and Applied Ecology, 2012, 13, 489-499.	2.7	28
76	AM fungal communities inhabiting the roots of submerged aquatic plant Lobelia dortmanna are diverse and include a high proportion of novel taxa. Mycorrhiza, 2016, 26, 735-745.	2.8	28
77	Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza, 2019, 29, 1-11.	2.8	28
78	Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages?. Canadian Journal of Botany, 1998, 76, 613-619.	1.1	28
79	Positive association between understory species richness and a dominant shrub species (Corylus) Tj ETQq $1\ 1\ 0.7$	784314 rg 3.2	BT /Overlock 27
80	Effects of arbuscular mycorrhiza on community composition and seedling recruitment in temperate forest understory. Basic and Applied Ecology, 2012, 13, 663-672.	2.7	27
81	Userâ€friendly bioinformatics pipeline gDAT (graphical downstream analysis tool) for analysing rDNA sequences. Molecular Ecology Resources, 2021, 21, 1380-1392.	4.8	27
82	Interspecific competition and arbuscular mycorrhiza: Importance for the coexistence of two calcareous grassland species. Folia Geobotanica Et Phytotaxonomica, 1995, 30, 223-230.	0.4	26
83	Responses of a rare (Viola elatior) and a common (Viola mirabilis) congeneric species to different management conditions in grassland — is different light competition ability responsible for different abundances?. Acta Oecologica, 2003, 24, 169-174.	1.1	26
84	Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants. PLoS ONE, 2011, 6, e26505.	2.5	26
85	Florivores decrease pollinator visitation in a self-incompatible plant. Basic and Applied Ecology, 2010, 11, 669-675.	2.7	25
86	Ancient environmental DNA reveals shifts in dominant mutualisms during the lateÂQuaternary. Nature Communications, 2018, 9, 139.	12.8	24
87	Do different competitive abilities of three fern species explain their different regional abundances?. Journal of Vegetation Science, 2004, 15, 351-356.	2.2	23
88	Inter- and intrasporal nuclear ribosomal gene sequence variation within one isolate of arbuscular mycorrhizal fungus, Diversispora sp Symbiosis, 2012, 58, 135-147.	2.3	22
89	Soybean cultivation supports a diverse arbuscular mycorrhizal fungal community in central Argentina. Applied Soil Ecology, 2018, 124, 289-297.	4.3	22
90	Asymmetric patterns of global diversity among plants and mycorrhizal fungi. Journal of Vegetation Science, 2020, 31, 355-366.	2.2	20

#	Article	IF	Citations
91	Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecology Letters, 2021, 24, 426-437.	6.4	20
92	Reintroduction of a Rare Plant (<i>Gladiolus imbricatus</i>) Population to a River Floodplain—How Important is Meadow Management?. Restoration Ecology, 2008, 16, 382-385.	2.9	19
93	Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms, 2021, 9, 229.	3.6	19
94	Toward a functionâ€first framework to make soil microbial ecology predictive. Ecology, 2022, 103, e03594.	3.2	19
95	Global soil microbiomes: A new frontline of biomeâ€ecology research. Global Ecology and Biogeography, 2022, 31, 1120-1132.	5.8	19
96	Conservation of the Endemic Fern Lineage Diellia (Aspleniaceae) on the Hawaiian Islands: Can Population Structure Indicate Regional Dynamics and Endangering Factors?. Folia Geobotanica, 2008, 43, 3-18.	0.9	17
97	Response to Comment on "Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism― Science, 2016, 351, 826-826.	12.6	17
98	Arbuscular mycorrhizal fungal communities in tropical rain forest are resilient to slash-and-burn agriculture. Journal of Tropical Ecology, 2018, 34, 186-199.	1.1	17
99	Population stage structure of Hawaiian endemic fern taxa of Diellia (Aspleniaceae): implications for monitoring and regional dynamics. Canadian Journal of Botany, 2004, 82, 1438-1445.	1.1	16
100	Grassland diversity under changing productivity and the underlying mechanisms – results of a 10â€yr experiment. Journal of Vegetation Science, 2012, 23, 919-930.	2.2	16
101	How do arbuscular mycorrhizal fungi travel?. New Phytologist, 2019, 222, 645-647.	7.3	16
102	Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere, 2019, 10, e02937.	2.2	16
103	Not a melting pot: Plant species aggregate in their nonâ€native range. Global Ecology and Biogeography, 2020, 29, 482-490.	5.8	16
104	Global macroecology of nitrogenâ€fixing plants. Global Ecology and Biogeography, 2021, 30, 514-526.	5.8	16
105	Optimal management of the rare Gladiolus imbricatus in Estonian coastal meadows indicated by its population structure. Applied Vegetation Science, 2007, 10, 161-168.	1.9	15
106	Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages?. Canadian Journal of Botany, 1998, 76, 613-619.	1,1	14
107	Contrasting effects of plant population size on florivory and pollination. Basic and Applied Ecology, 2009, 10, 737-744.	2.7	14
108	Woody encroachment in grassland elicits complex changes in the functional structure of above―and belowground biota. Ecosphere, 2021, 12, e03512.	2.2	14

#	Article	IF	Citations
109	Global taxonomic and phylogenetic assembly of AM fungi. Mycorrhiza, 2022, 32, 135-144.	2.8	14
110	Distribution of plant mycorrhizal traits along an elevational gradient does not fully mirror the latitudinal gradient. Mycorrhiza, 2021, 31, 149-159.	2.8	13
111	Small-scale dynamics of plant communities in an experimentally polluted and fungicide-treated subarctic birch-pine forest. Acta Oecologica, 1999, 20, 29-37.	1.1	12
112	Competitive responses of the rare Viola elatior and the common Viola mirabilis. Plant Ecology, 2006, 184, 105-110.	1.6	12
113	Arbuscular mycorrhizal fungi associating with roots of Alnus and Rubus in Europe and the Middle East. Fungal Ecology, 2016, 24, 27-34.	1.6	12
114	Towards a consistent benchmark for plant mycorrhizal association databases. New Phytologist, 2021, 231, 913-916.	7. 3	12
115	Mycorrhizal symbiosis alleviates plant water deficit within and across generations via phenotypic plasticity. Journal of Ecology, 2022, 110, 262-276.	4.0	11
116	Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology, 2022, 103, e3761.	3.2	11
117	Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environmental Monitoring and Assessment, 2010, 164, 337-348.	2.7	10
118	Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions. Ecography, 2018, 41, 1583-1593.	4.5	9
119	DarkDivNet – A global research collaboration to explore the dark diversity of plant communities. Journal of Vegetation Science, 2019, 30, 1039-1043.	2.2	9
120	Arbuscular mycorrhizal fungal community composition determines the competitive response of two grassland forbs. PLoS ONE, 2019, 14, e0219527.	2.5	8
121	Secondary succession and summer herbivory in a subarctic grassland: community structure and diversity. Ecography, 1997, 20, 595-604.	4.5	7
122	Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	5
123	Biodiversity and ecosystem functioning: It is time for dispersal experiments. Journal of Vegetation Science, 2006, 17, 543.	2.2	5
124	Responses of plant community mycorrhization to anthropogenic influence depend on the habitat and mycorrhizal type. Oikos, 2019, 128, 1565-1575.	2.7	4
125	Plant diversity but not productivity is associated with community mycorrhization in temperate grasslands. Journal of Vegetation Science, 2022, 33, .	2.2	2
126	Arbuscular mycorrhizal fungi promote small-scale vegetation recovery in the forest understorey. Oecologia, 2021, 197, 685-697.	2.0	1