Peter Lund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4702923/publications.pdf

Version: 2024-02-01

360 papers

15,616 citations

18436 62 h-index 106 g-index

380 all docs $\frac{380}{\text{docs citations}}$

380 times ranked 14533 citing authors

#	Article	IF	CITATIONS
1	Novel LaFe2O4 spinel structure with a large oxygen reduction response towards protonic ceramic fuel cell cathode. Journal of Rare Earths, 2023, 41, 413-421.	2.5	13
2	Hybrid heterojunction solar cells based on singleâ€walled carbon nanotubes and amorphous silicon thin films. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, e402.	1.9	2
3	Techno-economic cost assessment of a combined cooling heating and power system coupled to organic Rankine cycle with life cycle method. Energy, 2022, 239, 121939.	4.5	20
4	The policy operations room: Analyzing path-dependent decision-making in wicked socio-ecological disruptions. Safety Science, 2022, 146, 105567.	2.6	5
5	Ideal scheme selection of an integrated conventional and renewable energy system combining multi-objective optimization and matching performance analysis. Energy Conversion and Management, 2022, 251, 114989.	4.4	34
6	A comparative assessment of air quality across European countries using an integrated decision support model. Socio-Economic Planning Sciences, 2022, 81, 101198.	2.5	22
7	Multi-objective optimization of an integrated energy system against energy, supply-demand matching and exergo-environmental cost over the whole life-cycle. Energy Conversion and Management, 2022, 254, 115203.	4.4	39
8	Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model. Energy, 2022, 240, 122815.	4.5	60
9	Optimizing the shape of PCM container to enhance the melting process. , 2022, 1, .		4
10	Rapid climate transformation requires transformative policy and science thinkingâ€"An editorial essay. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, .	1.9	1
11	Controlling anodization time to monitor film thickness, phase composition and crystal orientation during anodic growth of TiO2 nanotubes. Electrochemistry Communications, 2022, 134, 107168.	2.3	14
12	Predictive Modeling of Dye Solar Cell Degradation. Solar Rrl, 2022, 6, .	3.1	2
13	Configuration optimization and selection of a photovoltaic-gas integrated energy system considering renewable energy penetration in power grid. Energy Conversion and Management, 2022, 254, 115260.	4.4	46
14	Highly active titanium oxide photocathode for photoelectrochemical water reduction in alkaline solution. Journal of Power Sources, 2022, 524, 231095.	4.0	6
15	Mutual Conversion of CO–CO ₂ on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9138-9150.	4.0	52
16	Reduced TiO2 nanotube array as an excellent cathode for hydrogen evolution reaction in alkaline solution. Catalysis Today, 2022, 402, 3-9.	2.2	6
17	Comment on "How green is blue hydrogen?― Energy Science and Engineering, 2022, 10, 1944-1954.	1.9	23
18	Exergo-environmental cost optimization of a solar-based cooling and heating system considering equivalent emissions of life-cycle chain. Energy Conversion and Management, 2022, 258, 115534.	4.4	10

#	Article	IF	CITATIONS
19	Encapsulation of commercial and emerging solar cells with focus on perovskite solar cells. Solar Energy, 2022, 237, 264-283.	2.9	35
20	A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renewable and Sustainable Energy Reviews, 2022, 161, 112339.	8.2	116
21	Energy, environmental-based cost, and solar share comparisons of a solar driven cooling and heating system with different types of building. Applied Thermal Engineering, 2022, 211, 118435.	3.0	10
22	Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax. Energy, 2022, 250, 123756.	4.5	28
23	Improving the accuracy of predicting the performance of solar collectors through clustering analysis with artificial neural network models. Energy Reports, 2022, 8, 3970-3981.	2.5	14
24	Beyond hydrophobicity: how F4-TCNQ doping of the hole transport material improves stability of mesoporous triple-cation perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 11721-11731.	5.2	19
25	Optimization of a weather-based energy system for high cooling and low heating conditions using different types of water-cooled chiller. Energy, 2022, 252, 124094.	4.5	10
26	Synergistic effect of sodium content for tuning Sm2O3 as a stable electrolyte in proton ceramic fuel cells. Renewable Energy, 2022, 193, 608-616.	4.3	13
27	Optical, thermal and thermo-mechanical model for a larger-aperture parabolic trough concentrator system consisting of a novel flat secondary reflector and an improved absorber tube. Solar Energy, 2022, 240, 376-387.	2.9	8
28	Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cells. Renewable Energy, 2022, 196, 901-911.	4.3	22
29	Thermo-ecological cost optimization of a solar thermal and photovoltaic integrated energy system considering energy level. Sustainable Production and Consumption, 2022, 33, 298-311.	5.7	3
30	TiO ₂ nanotubes for dyeâ€sensitized solar cells—A review. Energy Science and Engineering, 2021, 9, 921-937.	1.9	51
31	Electrochemical impact of the carbonate in ceria-carbonate composite for low temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2021, 46, 9898-9904.	3.8	6
32	Coking resistant Ni–La0.8Sr0.2FeO3 composite anode improves the stability of syngas-fueled SOFC. International Journal of Hydrogen Energy, 2021, 46, 9809-9817.	3.8	15
33	Extreme sensitivity of dye solar cells to UVâ€induced degradation. Energy Science and Engineering, 2021, 9, 19-26.	1.9	11
34	Importance of Energy Efficiency in Manufacturing Industries for Climate and Competitiveness. Environmental and Climate Technologies, 2021, 25, 306-317.	0.5	5
35	How to Assess Policy Impact in National Energy and Climate Plans. Environmental and Climate Technologies, 2021, 25, 405-421.	0.5	11
36	Investigation of factors affecting the performance of a single-layer nanocomposite fuel cell. Catalysis Today, 2021, 364, 104-110.	2.2	9

#	Article	IF	Citations
37	Performance analysis and exergo-economic optimization of a solar-driven adjustable tri-generation system. Energy Conversion and Management, 2021, 233, 113873.	4.4	42
38	Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector. Energy, 2021, 220, 119713.	4.5	23
39	Comparative study of modelling the thermal efficiency of a novel straight through evacuated tube collector with MLR, SVR, BP and RBF methods. Sustainable Energy Technologies and Assessments, 2021, 44, 101029.	1.7	10
40	Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator. Renewable Energy, 2021, 169, 1229-1241.	4.3	22
41	Linking socio-economic aspects to power system disruption models. Energy, 2021, 222, 119928.	4.5	8
42	Novel Perovskite Semiconductor Based on Co/Fe-Codoped LBZY (La _{0.5} Ba _{0.5}) Tj ETQq Electrolyte in Ceramic Fuel Cells. ACS Applied Energy Materials, 2021, 4, 5798-5808.	0 0 0 rgBT 2.5	Overlock 10 36
43	Integrated performance analysis of a space heating system assisted by photovoltaic/thermal collectors and ground source heat pump for hotel and office building types. Renewable Energy, 2021, 169, 925-934.	4.3	40
44	Thermodynamic Analysis of a Conceptual Fixed-Bed Solar Thermochemical Cavity Receiver–Reactor Array for Water Splitting Via Ceria Redox Cycling. Frontiers in Energy Research, 2021, 9, .	1.2	4
45	The role of micro-nano pores in interfacial solar evaporation systems – A review. Applied Energy, 2021, 292, 116871.	5.1	44
46	Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels. Energy, 2021, 224, 120067.	4.5	20
47	Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data. Energy, 2021, 225, 120160.	4.5	34
48	Low-temperature solid oxide fuel cells based on Tm-doped SrCeO2-δ semiconductor electrolytes. Materials Today Energy, 2021, 20, 100661.	2.5	17
49	Sustainable urban infrastructure in China. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e411.	1.9	0
50	Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3â^1î′ semiconductor electrolyte for boosting solid oxide fuel cell performance. Renewable Energy, 2021, 172, 336-349.	4.3	26
51	Improving stability and heat transfer through a beam in a semi-circular absorber tube of a large-aperture trough solar concentrator. Energy, 2021, 228, 120614.	4.5	6
52	Low temperature ceramic fuel cells employing lithium compounds: A review. Journal of Power Sources, 2021, 503, 230070.	4.0	26
53	Advanced LT-SOFC Based on Reconstruction of the Energy Band Structure of the LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ â€"Sm _{0.2} Ce _{0.8 Heterostructure for Fast Ionic Transport. ACS Applied Energy Materials, 2021, 4, 8922-8932.}	2l5>O <s< td=""><td>sub» 2-δ</td></s<>	sub» 2-δ
54	Could Europe become the first climate-neutral continent?. Nature, 2021, 596, 486-486.	13.7	5

#	Article	IF	CITATIONS
55	Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump. Energy, 2021, 230, 120717.	4.5	39
56	Characteristics of natural convection in n-eicosane in a square cavity with discrete heat source. Case Studies in Thermal Engineering, 2021, 27, 101245.	2.8	7
57	Energy system resilience – A review. Renewable and Sustainable Energy Reviews, 2021, 150, 111476.	8.2	81
58	Exergo-environmental cost optimization of a combined cooling, heating and power system using the emergy concept and equivalent emissions as ecological boundary. Energy, 2021, 233, 121124.	4.5	11
59	Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cell. International Journal of Hydrogen Energy, 2021, 46, 33969-33977.	3.8	28
60	Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-Î-Sm0.2Ce0.8O2-Î-heterostructure. Applied Catalysis B: Environmental, 2021, 298, 120503.	10.8	78
61	Effect of Ti foil size on the micro sizes of anodic TiO2 nanotube array and photoelectrochemical water splitting performance. Chemical Engineering Journal, 2021, 425, 131415.	6.6	18
62	Optimizing research on large-aperture parabolic trough condenser using two kinds of absorber tubes with reflector at 500°C. Renewable Energy, 2021, 179, 2187-2197.	4.3	5
63	Semiconductor Nb-Doped SrTiO _{3â^î^} Perovskite Electrolyte for a Ceramic Fuel Cell. ACS Applied Energy Materials, 2021, 4, 365-375.	2.5	30
64	Electrochemical Properties of a Dual-Ion Semiconductor-Ionic Co _{0.2} Zn _{0.8} O-Sm _{0.20} Ce _{0.80} O _{2â^îî'} Composite for a High-Performance Low-Temperature Solid Oxide Fuel Cell. ACS Applied Energy Materials, 2021, 4, 194-207.	2.5	21
65	Semiconductor Electrochemistry for Clean Energy Conversion and Storage. Electrochemical Energy Reviews, 2021, 4, 757-792.	13.1	77
66	Theoretical study on melting of phase change material by natural convection. Case Studies in Thermal Engineering, 2021, 28, 101620.	2.8	10
67	Systematic Analysis on the Effect of Sintering Temperature for Optimized Performance of LiNiZnO-GdCeO-LiCO-NaCO-KCO Based 3D Printed Single-Layer Ceramic Fuel Cell. Nanomaterials, 2021, 11,	1.9	0
68	Systematic Analysis on the Effect of Sintering Temperature for Optimized Performance of Li0.15Ni0.45Zn0.4O2-Gd0.2Ce0.8O2-Li2CO3-Na2CO3-K2CO3 Based 3D Printed Single-Layer Ceramic Fuel Cell. Nanomaterials, 2021, 11, 2180.	1.9	2
69	Nanocrystalline Surface Layer of WO3 for Enhanced Proton Transport during Fuel Cell Operation. Crystals, 2021, 11, 1595.	1.0	7
70	Rational design of highly efficient flexible and transparent p-type composite electrode based on single-walled carbon nanotubes. Nano Energy, 2020, 67, 104183.	8.2	29
71	Improving renewable energy policy planning and decision-making through a hybrid MCDM method. Energy Policy, 2020, 137, 111174.	4.2	169
72	Modeling of Zinc Bromine redox flow battery with application to channel design. Journal of Power Sources, 2020, 450, 227436.	4.0	16

#	Article	IF	CITATIONS
73	Adhesion of Single-Walled Carbon Nanotube Thin Films with Different Materials. Journal of Physical Chemistry Letters, 2020, 11, 504-509.	2.1	8
74	Functional ceria-based nanocomposites for advanced low-temperature (300–600°C) solid oxide fuel cell: A comprehensive review. Materials Today Energy, 2020, 15, 100373.	2.5	48
75	Modelling city-scale transient district heat demand by combining physical and data-driven approach. Applied Thermal Engineering, 2020, 178, 115590.	3.0	6
76	Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells. Ceramics International, 2020, 46, 29290-29296.	2.3	23
77	Outlook on biofuels in future studies: A systematic literature review. Renewable and Sustainable Energy Reviews, 2020, 134, 110326.	8.2	81
78	Application of a Triple-Conducting Heterostructure Electrolyte of Ba _{0.5} Sr _{0.5} Co _{0.1} Fe _{0.7} Zr _{0.1} Y _{0.1} O and Ca _{0.04} Ce _{0.80} Sm _{0.16} O _{2â^Î} in a High-Performance Low-Temperature Solid Oxide Fuel Cell. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35071-35080.	_{3â^}	'δ⊂>
79	Improving the performance of large-aperture parabolic trough solar concentrator using semi-circular absorber tube with external fin and flat-plate radiation shield. Renewable Energy, 2020, 159, 1215-1223.	4.3	25
80	Improving the Economics of Battery Storage. Joule, 2020, 4, 2543-2545.	11.7	6
81	Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach. Energy Economics, 2020, 91, 104894.	5.6	55
82	Optical Design of a Novel Two-Stage Dish Applied to Thermochemical Water/CO2 Splitting with the Concept of Rotary Secondary Mirror. Energies, 2020, 13, 3553.	1.6	2
83	The effect of dodecylammonium chloride on the film morphology, crystallinity, and performance of lead-free Bi-based solution-processed photovoltaics devices. Solar Energy, 2020, 207, 1356-1363.	2.9	18
84	Improving the state of charge estimation of reused lithium-ion batteries by abating hysteresis using machine learning technique. Journal of Energy Storage, 2020, 32, 101678.	3.9	42
85	Influence of sintering temperature on ceramic fuel cell electrolyte conductivity with lithium-compound electrode. Ceramics International, 2020, 46, 17545-17552.	2.3	19
86	Carbonate dual-phase improves the performance of single-layer fuel cell made from mixed ionic and semiconductor composite. BMC Energy, 2020, 2, .	6.3	2
87	Effect of Heat Demand on Integration of Urban Large-Scale Renewable Schemes—Case of Helsinki City (60 °N). Energies, 2020, 13, 2164.	1.6	6
88	Sustainability evaluation and sensitivity analysis of district heating systems coupled to geothermal and solar resources. Energy Conversion and Management, 2020, 220, 113084.	4.4	67
89	Thermodynamic performance analysis and multi-criteria optimization of a hybrid combined heat and power system coupled with geothermal energy. Energy Conversion and Management, 2020, 210, 112741.	4.4	61
90	A Review of the Compound Parabolic Concentrator (CPC) with a Tubular Absorber. Energies, 2020, 13, 695.	1.6	18

#	Article	IF	Citations
91	Little time left to reverse emissions—Growing hope despite disappointing CO ₂ trend. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e369.	1.9	3
92	Improving the performance of a 2-stage large aperture parabolic trough solar concentrator using a secondary reflector designed by adaptive method. Renewable Energy, 2020, 152, 23-33.	4.3	45
93	Stability of cobalt complex based dye solar cells with PEDOT and Pt catalysts and different electrolyte concentrations. Electrochimica Acta, 2020, 335, 135652.	2.6	16
94	Deep decarbonization of urban energy systems through renewable energy and sector-coupling flexibility strategies. Journal of Environmental Management, 2020, 260, 110090.	3.8	60
95	A novel clustering algorithm for grouping and cascadeÂutilization of retired Li-ion batteries. Journal of Energy Storage, 2020, 29, 101303.	3.9	35
96	Climate-friendly but socially rejected energy-transition pathways: The integration of techno-economic and socio-technical approaches in the Nordic-Baltic region. Energy Research and Social Science, 2020, 67, 101559.	3.0	50
97	Mechanism for Major Improvement in SOFC Electrolyte Conductivity When Using Lithium Compounds as Anode. ACS Applied Energy Materials, 2020, 3, 4134-4138.	2.5	39
98	Straight-through all-glass evacuated tube solar collector for low and medium temperature applications. Solar Energy, 2020, 201, 935-943.	2.9	29
99	Analyzing the effects of uncertainties on the modelling of low-carbon energy system pathways. Energy, 2020, 201, 117652.	4.5	28
100	Review of zinc dendrite formation in zinc bromine redox flow battery. Renewable and Sustainable Energy Reviews, 2020, 127, 109838.	8.2	75
101	Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520°C. International Journal of Hydrogen Energy, 2020, 45, 14470-14479.	3.8	52
102	Printed single-walled carbon-nanotubes-based counter electrodes for dye-sensitized solar cells with copper-based redox mediators. Semiconductor Science and Technology, 2019, 34, 105001.	1.0	17
103	A facile method to produce TiO2 nanorods for high-efficiency dye solar cells. Journal of Power Sources, 2019, 438, 227012.	4.0	23
104	Modelling and performance evaluation of an integrated receiver-storage for concentrating solar power beam-down system under heterogeneous radiative conditions. Solar Energy, 2019, 188, 1264-1273.	2.9	5
105	Influence of titanium dioxide surface activation on the performance of mesoscopic perovskite solar cells. Thin Solid Films, 2019, 686, 137418.	0.8	4
106	Thermal Performance Analysis of a Direct-Heated Recompression Supercritical Carbon Dioxide Brayton Cycle Using Solar Concentrators. Energies, 2019, 12, 4358.	1.6	15
107	Pathway Analysis of a Zero-Emission Transition in the Nordic-Baltic Region. Energies, 2019, 12, 3337.	1.6	23
108	Energy integration and interaction between buildings and vehicles: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2019, 114, 109337.	8.2	85

#	Article	IF	Citations
109	Coral-shaped porous LiFePO4/graphene hybrids for high rate and all-climate battery applications. Energy Storage Materials, 2019, 21, 457-463.	9.5	29
110	Different flexibility options for better system integration of wind power. Energy Strategy Reviews, 2019, 26, 100368.	3.3	33
111	Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials, 2019, 12, 1998.	1.3	152
112	Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 10257-10265.	3.2	18
113	High performance integrated receiver-storage system for concentrating solar power beam-down system. Solar Energy, 2019, 187, 85-94.	2.9	15
114	Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectivesâ€"Case of Finland. Energies, 2019, 12, 949.	1.6	57
115	Energy system impact of wind power with curtailment: national- and city-scale analysis. International Journal of Low-Carbon Technologies, 2019, 14, 277-285.	1.2	6
116	Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO ₃ electrolyte. Journal of Materials Chemistry A, 2019, 7, 9638-9645.	5. 2	90
117	Sustaining our common future: Transformative, timely, commonsâ€based change is needed. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e334.	1.9	2
118	Evaluation of the reliability of solar micro-grids in emerging markets – Issues and solutions. Energy for Sustainable Development, 2019, 48, 34-42.	2.0	16
119	Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews, 2019, 101, 440-452.	8.2	82
120	Coupling Variable Renewable Electricity Production to the Heating Sector through Curtailment and Power-to-heat Strategies for Accelerated Emission Reduction. Future Cities and Environment, 2019, 5, .	0.6	20
121	Effect of major policy disruptions in energy system transition: Case Finland. Energy Policy, 2018, 116, 323-336.	4.2	25
122	The state of external circuit affects the stability of dye-sensitized solar cells. Electrochimica Acta, 2018, 275, 59-66.	2.6	5
123	Critical analysis on the quality of stability studies of perovskite and dye solar cells. Energy and Environmental Science, 2018, 11, 730-738.	15.6	35
124	Assessing the impact of optical errors in a novel 2-stage dish concentrator using Monte-Carlo ray-tracing simulation. Renewable Energy, 2018, 123, 603-615.	4.3	22
125	Application of dye-sensitized and perovskite solar cells on flexible substrates. Flexible and Printed Electronics, 2018, 3, 013002.	1.5	14
126	Shifting to clean energyâ€"An editorial essay. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e283.	1.9	1

#	Article	IF	CITATIONS
127	New developments in fuel cells: From traditional to innovative concepts (Preface for China-Europe) Tj ETQq1 12595.	1 0.784314 rg 3.8	BT /Overloc 4
128	Biobased aerogels with different surface charge as electrolyte carrierÂmembranes in quantum dot-sensitized solar cell. Cellulose, 2018, 25, 3363-3375.	2.4	17
129	Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 384, 318-327.	4.0	32
130	Reducing convective heat losses in solar dish cavity receivers through a modified air-curtain system. Solar Energy, 2018, 166, 50-58.	2.9	34
131	Modelling energy production flexibility: system dynamics approach. Energy Procedia, 2018, 147, 503-509.	1.8	21
132	Design and performance evaluation of a high-temperature cavity receiver for a 2-stage dish concentrator. Solar Energy, 2018, 174, 1126-1132.	2.9	27
133	Core/shell Cu/FePtCu nanoparticles with face-centered tetragonal texture: An active and stable low-Pt catalyst for enhanced oxygen reduction. Nano Energy, 2018, 54, 280-287.	8.2	22
134	Use of bio-based carbon materials for improving biogas yield and digestate stability. Energy, 2018, 164, 898-909.	4.5	81
135	Wide bandgap oxides for low-temperature single-layered nanocomposite fuel cell. Nano Energy, 2018, 53, 391-397.	8.2	55
136	Power availability and reliability of solar pico-grids in rural areas: A case study from northern India. Sustainable Energy Technologies and Assessments, 2018, 29, 147-154.	1.7	8
137	Microscopic techniques for analysis of ceramic fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e299.	1.9	2
138	Recent progress in flexible dye solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e302.	1.9	18
139	Testing dyeâ€sensitized solar cells in harsh northern outdoor conditions. Energy Science and Engineering, 2018, 6, 187-200.	1.9	15
140	Capacity matching of storage to PV in a global frame with different loads profiles. Journal of Energy Storage, 2018, 18, 218-228.	3.9	22
141	Data for global power demand and solar PV output matching. Data in Brief, 2018, 19, 1694-1715.	0.5	1
142	An evaluation of dynamic electricity pricing for solar micro-grids in rural India. Energy Strategy Reviews, 2018, 21, 130-136.	3.3	9
143	Semiconductor-ionic materials could play an important role in advanced fuel-to-electricity conversion. International Journal of Energy Research, 2018, 42, 3413-3415.	2.2	28
144	A review of demand side flexibility potential in Northern Europe. Renewable and Sustainable Energy Reviews, 2018, 91, 654-664.	8.2	95

#	Article	IF	Citations
145	Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials. Frontiers of Chemical Science and Engineering, 2018, 12, 162-173.	2.3	9
146	Global Challenges: Energy. Global Challenges, 2017, 1, 7-8.	1.8	0
147	Frugal energy innovations for developing countries – a framework. Global Challenges, 2017, 1, 9-19.	1.8	26
148	Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation. Applied Energy, 2017, 190, 800-812.	5.1	75
149	Stabilizing Dendron-Modified Talc-Based Electrolyte for Quasi-Solid Dye-Sensitized Solar Cell. Electrochimica Acta, 2017, 228, 413-421.	2.6	7
150	Inkjet-printed platinum counter electrodes for dye-sensitized solar cells. Organic Electronics, 2017, 44, 159-167.	1.4	21
151	A novel 2-stage dish concentrator with improved optical performance for concentrating solar power plants. Renewable Energy, 2017, 108, 92-97.	4.3	35
152	Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.	8.2	345
153	Status and future strategies for Concentrating Solar Power in China. Energy Science and Engineering, 2017, 5, 100-109.	1.9	36
154	Charge separation and transport in La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy, 2017, 37, 195-202.	8.2	115
155	Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO ₂ Layers on the Performance of Mesoscopic Perovskite Solar Cells. ACS Applied Materials & English & Engli	4.0	36
156	Better linkage of smart materials to energy scale. International Journal of Energy Research, 2017, 41, 1369-1371.	2.2	0
157	Gel Electrolytes with Polyamidopyridine Dendron Modified Talc for Dye-Sensitized Solar Cells. ACS Applied Materials & Dendron Modified Talc for Dye-Sensitized Solar Cells. ACS Applied Materials & Dendron Modified Talc for Dye-Sensitized Solar Cells. ACS	4.0	8
158	Implications of Finland's plan to ban coal and cutting oil use. Energy Policy, 2017, 108, 78-80.	4.2	13
159	High conductive (LiNaK) 2 CO 3 Ce 0.85 Sm 0.15 O 2 electrolyte compositions for IT-SOFC applications. International Journal of Hydrogen Energy, 2017, 42, 20904-20909.	3.8	29
160	Clean energy transitionâ€"our <i>urgent</i> challenge: an editorial assay. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e243.	1.9	5
161	Bridging new and old energy. International Journal of Energy Research, 2017, 41, 3-5.	2.2	1
162	Water and Energy – Interconnections and Conflicts. Global Challenges, 2017, 1, 1700056.	1.8	4

#	Article	IF	CITATIONS
163	Impact of H ₂ O on organic–inorganic hybrid perovskite solar cells. Energy and Environmental Science, 2017, 10, 2284-2311.	15.6	345
164	Long-Term Stability of Dye-Sensitized Solar Cells Assembled with Cobalt Polymer Gel Electrolyte. Journal of Physical Chemistry C, 2017, 121, 17577-17585.	1.5	28
165	Advanced low-temperature ceramic nanocomposite fuel cells using ultra high ionic conductivity electrolytes synthesized through freeze-dried method and solid-route. Materials Today Energy, 2017, 5, 338-346.	2.5	38
166	Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters, 2017, 2, 2752-2755.	8.8	30
167	Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility. Advanced Materials Technologies, 2017, 2, 1600183.	3.0	137
168	Global Challenges - an innovative journal for tackling humanity's major challenges. Global Challenges, 2017, 1, 3-4.	1.8	2
169	Influence of TiO2 compact layer precursor on the performance of perovskite solar cells. Organic Electronics, 2017, 41, 287-293.	1.4	39
170	Cobalt-Phosphate modified TiO2/BiVO4 nanoarrays photoanode for efficient water splitting. International Journal of Hydrogen Energy, 2017, 42, 5496-5504.	3.8	67
171	A high-performance self-powered broadband photodetector based on a CH ₃ NH ₃ Pbl ₃ perovskite/ZnO nanorod array heterostructure. Journal of Materials Chemistry C, 2016, 4, 7302-7308.	2.7	159
172	Energy, climate, and our historic opportunity: an editorial essay. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, 5-6.	1.9	2
173	Carbon nanotube–amorphous silicon hybrid solar cell with improved conversion efficiency. Nanotechnology, 2016, 27, 185401.	1.3	13
174	An analytical model of hydrogen evolution and oxidation reactions on electrodes partially covered with a catalyst. Physical Chemistry Chemical Physics, 2016, 18, 13616-13628.	1.3	5
175	Rheological characterization of liquid electrolytes for drop-on-demand inkjet printing. Organic Electronics, 2016, 38, 307-315.	1.4	23
176	Performance Improvement of Perovskite Solar Cells Based on PCBM-Modified ZnO-Nanorod Arrays. IEEE Journal of Photovoltaics, 2016, 6, 1530-1536.	1.5	20
177	Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes. Energy, 2016, 112, 364-375.	4.5	62
178	Effect of extreme temperatures on battery charging and performance of electric vehicles. Journal of Power Sources, 2016, 328, 37-45.	4.0	100
179	A hybrid lithium-ion battery model for system-level analyses. International Journal of Energy Research, 2016, 40, 1576-1592.	2.2	14
180	Improved flexibility with large-scale variable renewable power in cities through optimal demand side management and power-to-heat conversion. Energy Conversion and Management, 2016, 126, 649-661.	4.4	122

#	Article	IF	Citations
181	Optical analysis of solar collector with new V-shaped CPC. Solar Energy, 2016, 135, 780-785.	2.9	25
182	Intriguing Photochemistry of the Additives in the Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 27768-27781.	1.5	10
183	The business of distributed solar power: a comparative case study of centralized charging stations and solar microgrids. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, 640-648.	1.9	14
184	Potential of distributed photovoltaics in urban Chile. Solar Energy, 2016, 135, 43-49.	2.9	36
185	Quasi-solid electrolyte with polyamidoamine dendron modified-talc applied to dye-sensitized solar cells. Journal of Power Sources, 2016, 325, 161-170.	4.0	9
186	Dye-sensitized solar cells with inkjet-printed dyes. Energy and Environmental Science, 2016, 9, 2453-2462.	15.6	65
187	Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Solar Energy, 2016, 135, 325-336.	2.9	56
188	TiO ₂ /ZnO/TiO ₂ sandwich multi-layer films as a hole-blocking layer for efficient perovskite solar cells. International Journal of Energy Research, 2016, 40, 806-813.	2.2	31
189	Improving catalyst stability in nano-structured solar and fuel cells. Catalysis Today, 2016, 259, 259-265.	2.2	17
190	An integrated scenario-based robust planning approach for foresight and strategic management with application to energy industry. Technological Forecasting and Social Change, 2016, 104, 162-171.	6.2	69
191	Clean energy systems as mainstream energy options. International Journal of Energy Research, 2016, 40, 4-12.	2.2	19
192	Alternative view on niche development: situated learning on policy communities, power and agency. Technology Analysis and Strategic Management, 2016, 28, 114-130.	2.0	8
193	Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 7568-7581.	3.8	5
194	Investigation of LiNiCuZn-oxide electrodes prepared by different methods: Synthesis, characterization and properties for ceramic carbonate composite fuel cells. International Journal of Hydrogen Energy, 2016, 41, 7609-7613.	3.8	9
195	Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy, 2016, 19, 156-164.	8.2	137
196	Optimal and rule-based control strategies for energy flexibility in buildings with PV. Applied Energy, 2016, 161, 425-436.	5.1	175
197	Policy inclusiveness and niche development: Examples from wind energy and photovoltaics in Denmark, Germany, Finland, and Spain. Energy Research and Social Science, 2015, 6, 136-145.	3.0	26
198	Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 2015, 45, 785-807.	8.2	1,133

#	Article	IF	Citations
199	Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials. Advanced Energy Materials, 2015, 5, 1401895.	10.2	166
200	The Effect of Electrolyte Purification on the Performance and Long-Term Stability of Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2015, 162, H661-H670.	1.3	18
201	Photovoltaic properties of dye sensitised solar cells using TiO 2 nanotube arrays for photoanodes: Role of hydrochloric acid treatment. Applied Surface Science, 2015, 355, 256-261.	3.1	14
202	Physical Modeling of Photoelectrochemical Hydrogen Production Devices. Journal of Physical Chemistry C, 2015, 119, 21747-21766.	1.5	21
203	Identifying bottlenecks in charging infrastructure of plug-in hybrid electric vehicles through agent-based traffic simulation. International Journal of Low-Carbon Technologies, 2015, 10, 110-118.	1.2	16
204	Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy and Environmental Science, 2015, 8, 3495-3514.	15.6	225
205	Scalability and feasibility of photoelectrochemical H ₂ evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy and Environmental Science, 2015, 8, 2991-2999.	15.6	162
206	High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy, 2015, 17, 206-215.	8.2	62
207	Energy policy planning near grid parity using a price-driven technology penetration model. Technological Forecasting and Social Change, 2015, 90, 389-399.	6.2	15
208	Smart energy system design for large clean power schemes in urban areas. Journal of Cleaner Production, 2015, 103, 437-445.	4.6	95
209	Insights into corrosion in dye solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1045-1056.	4.4	9
210	Effectiveness of smart charging of electric vehicles under power limitations. International Journal of Energy Research, 2014, 38, 404-414.	2.2	15
211	Energy and environment is defined by its crossâ€disciplinary basis: an editorial essay. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 1-2.	1.9	4
212	A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 19609-19615.	5.2	53
213	Nano energy technologies. International Journal of Energy Research, 2014, 38, 415-417.	2.2	1
214	Enhanced conductivity of SDC based nanocomposite electrolyte by spark plasma sintering. International Journal of Hydrogen Energy, 2014, 39, 14391-14396.	3.8	16
215	Carbonâ€Doubleâ€Bondâ€Free Printed Solar Cells from TiO ₂ /CH ₃ NH ₃ Pbl ₃ /CuSCN/Au: Structural Control and Photoaging Effects. ChemPhysChem, 2014, 15, 1194-1200.	1.0	148
216	Low Cost Ferritic Stainless Steel in Dye Sensitized Solar Cells with Cobalt Complex Electrolyte. Journal of the Electrochemical Society, 2014, 161, H138-H143.	1.3	8

#	Article	IF	Citations
217	Growth strategies of incumbent utilities as contextually embedded: Examples from Denmark, Germany, Finland and Spain. Technology in Society, 2014, 38, 81-92.	4.8	16
218	Rediscovering a Key Interface in Dye-Sensitized Solar Cells: Guanidinium and Iodine Competition for Binding Sites at the Dye/Electrolyte Surface. Journal of the American Chemical Society, 2014, 136, 7286-7294.	6.6	43
219	Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC). Journal of Power Sources, 2014, 263, 315-331.	4.0	99
220	Degradation and stability of nanostructured energy devices. Microelectronic Engineering, 2014, 126, 49-53.	1.1	7
221	How fast can businesses in the new energy sector grow? An analysis of critical factors. Renewable Energy, 2014, 66, 33-40.	4.3	20
222	Highly conductive, non-permeable, fiber based substrate for counter electrode application in dye-sensitized solar cells. Nano Energy, 2014, 9, 212-220.	8.2	22
223	Effect of electrolyte bleaching on the stability and performance of dye solar cells. Physical Chemistry Chemical Physics, 2014, 16, 6092.	1.3	50
224	Models for generating place and time dependent urban energy demand profiles. Applied Energy, 2014, 130, 256-264.	5.1	45
225	A Singleâ€Walled Carbon Nanotube Coated Flexible PVC Counter Electrode for Dyeâ€Sensitized Solar Cells. Advanced Materials Interfaces, 2014, 1, 1300055.	1.9	23
226	Nanocellulose aerogel membranes for optimal electrolyte filling in dye solar cells. Nano Energy, 2014, 8, 95-102.	8.2	51
227	An improved synthesis method of ceria-carbonate based composite electrolytes for low-temperature SOFC fuel cells. International Journal of Hydrogen Energy, 2013, 38, 16532-16538.	3.8	38
228	Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator. Electrochimica Acta, 2013, 111, 206-209.	2.6	21
229	High performance low temperature carbon composite catalysts for flexible dye sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 17689.	1.3	20
230	Nanostructured materials for energy applications. Microelectronic Engineering, 2013, 108, 84-85.	1.1	8
231	Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Applied Energy, 2013, 106, 163-175.	5.1	126
232	A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy, 2013, 2, 1179-1185.	8.2	117
233	Do Counter Electrodes on Metal Substrates Work with Cobalt Complex Based Electrolyte in Dye Sensitized Solar Cells?. Journal of the Electrochemical Society, 2013, 160, H132-H137.	1.3	32
234	Metallic and plastic dye solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 104-120.	1.9	45

#	Article	IF	Citations
235	A new energy conversion technology joining electrochemical and physical principles. RSC Advances, 2012, 2, 5066.	1.7	51
236	Urban energy systems with smart multi-carrier energy networks and renewable energy generation. Renewable Energy, 2012, 48, 524-536.	4.3	109
237	Comparison of Plastic Based Counter Electrodes for Dye Sensitized Solar Cells. Journal of the Electrochemical Society, 2012, 159, H656-H661.	1.3	12
238	The European Union challenge: integration of energy, climate, and economic policy. Wiley Interdisciplinary Reviews: Energy and Environment, 2012, 1, 60-68.	1.9	6
239	Energy strategies to confront climate change. Wiley Interdisciplinary Reviews: Energy and Environment, 2012, 1, 1-2.	1.9	3
240	Integration design of membrane electrode assemblies in low temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2012, 37, 19365-19370.	3.8	11
241	Effect of molecular filtering and electrolyte composition on the spatial variation in performance of dye solar cells. Journal of Electroanalytical Chemistry, 2012, 664, 63-72.	1.9	19
242	Flexible metal-free counter electrode for dye solar cells based on conductive polymer and carbon nanotubes. Journal of Electroanalytical Chemistry, 2012, 683, 70-74.	1.9	24
243	Large-scale urban renewable electricity schemes – Integration and interfacing aspects. Energy Conversion and Management, 2012, 63, 162-172.	4.4	66
244	Alternative ways for voltage control in smart grids with distributed electricity generation. International Journal of Energy Research, 2012, 36, 1032-1043.	2.2	8
245	In situ image processing method to investigate performance and stability of dye solar cells. Solar Energy, 2012, 86, 331-338.	2.9	47
246	Two-Dimensional Time-Dependent Numerical Modeling of Edge Effects in Dye Solar Cells. Journal of Physical Chemistry C, 2011, 115, 7019-7031.	1.5	31
247	Comparison of dye solar cell counter electrodes based on different carbon nanostructures. Thin Solid Films, 2011, 519, 8125-8134.	0.8	23
248	Review of materials and manufacturing options for large area flexible dye solar cells. Renewable and Sustainable Energy Reviews, 2011, 15, 3717-3732.	8.2	185
249	Stabilization of metal counter electrodes for dye solar cells. Journal of Electroanalytical Chemistry, 2011, 653, 93-99.	1.9	32
250	Energy relevance of microgeneration-Case advanced fuel cells. International Journal of Energy Research, 2011, 35, 1100-1106.	2.2	6
251	Advanced fuel cells: from materials and technologies to applications. International Journal of Energy Research, 2011, 35, 1023-1024.	2.2	5
252	A carbon gel catalyst layer for the roll-to-roll production of dye solar cells. Carbon, 2011, 49, 528-532.	5.4	36

#	Article	IF	CITATIONS
253	A single-component fuel cell reactor. International Journal of Hydrogen Energy, 2011, 36, 8536-8541.	3.8	67
254	Boosting new renewable technologies towards grid parity – Economic and policy aspects. Renewable Energy, 2011, 36, 2776-2784.	4.3	54
255	Thin Film Nano Solar Cells—From Device Optimization to Upscaling. Journal of Nanoscience and Nanotechnology, 2010, 10, 1078-1084.	0.9	14
256	Impacts of distributed photovoltaics on network voltages: Stochastic simulations of three Swedish low-voltage distribution grids. Electric Power Systems Research, 2010, 80, 1562-1571.	2.1	109
257	Device Physics of Dye Solar Cells. Advanced Materials, 2010, 22, E210-34.	11.1	371
258	Fast market penetration of energy technologies in retrospect with application to clean energy futures. Applied Energy, 2010, 87, 3575-3583.	5.1	33
259	Importance of integrated strategies and innovations for commercial breakthrough of fuel cells. International Journal of Hydrogen Energy, 2010, 35, 2602-2605.	3.8	5
260	Special IJHE issue from HyForum 2008 conference. International Journal of Hydrogen Energy, 2010, 35, 2579-2579.	3.8	0
261	Impacts of different data averaging times on statistical analysis of distributed domestic photovoltaic systems. Solar Energy, 2010, 84, 492-500.	2.9	45
262	Decentralized electricity system sizing and placement in distribution networks. Applied Energy, 2010, 87, 1865-1869.	5.1	18
263	Exploring past energy changes and their implications for the pace of penetration of new energy technologies. Energy, 2010, 35, 647-656.	4.5	35
264	Stability of Dye Solar Cells with Photoelectrode on Metal Substrates. Journal of the Electrochemical Society, 2010, 157, B814.	1.3	39
265	Single-Walled Carbon Nanotube Thin-Film Counter Electrodes for Indium Tin Oxide-Free Plastic Dye Solar Cells. Journal of the Electrochemical Society, 2010, 157, B1831.	1.3	50
266	Review of stability for advanced dye solar cells. Energy and Environmental Science, 2010, 3, 418.	15.6	260
267	Investigation of Temperature and Aging Effects in Nanostructured Dye Solar Cells Studied by Electrochemical Impedance Spectroscopy. International Journal of Photoenergy, 2009, 2009, 1-15.	1.4	15
268	Call for Papers: Nanoscience and Technology for Energy Applications. International Journal of Energy Research, 2009, 33, 221-221.	2.2	0
269	Nanostructured dye solar cells on flexible substrates-Review. International Journal of Energy Research, 2009, 33, 1145-1160.	2.2	109
270	Nanoscience and technology for energy applications. International Journal of Energy Research, 2009, 33, 1099-1100.	2.2	3

#	Article	IF	Citations
271	Effects of energy policies on industry expansion in renewable energy. Renewable Energy, 2009, 34, 53-64.	4.3	229
272	Photovoltaic fiber. Thin Solid Films, 2009, 517, 2799-2802.	0.8	56
273	Options for improving the load matching capability of distributed photovoltaics: Methodology and application to high-latitude data. Solar Energy, 2009, 83, 1953-1966.	2.9	129
274	Spatial distribution and decrease of dye solar cell performance induced by electrolyte filling. Electrochemistry Communications, 2009, 11, 25-27.	2.3	21
275	Segmented Cell Design for Improved Factoring of Aging Effects in Dye Solar Cells. Journal of Physical Chemistry C, 2009, 113, 10297-10302.	1.5	17
276	Dye Solar Cells on ITO-PET Substrate with TiO[sub 2] Recombination Blocking Layers. Journal of the Electrochemical Society, 2009, 156, B876.	1.3	54
277	Analysis of advanced energy chain typologies. International Journal of Energy Research, 2008, 32, 144-153.	2.2	2
278	Effect of Nonuniform Generation and Inefficient Collection of Electrons on the Dynamic Photocurrent and Photovoltage Response of Nanostructured Photoelectrodes. Journal of Physical Chemistry C, 2008, 112, 20491-20504.	1.5	45
279	The Performance Enhanced by Back Reflection in Nanostructured Dye-Sensitized Solar Cells. , 2008, , $1055-1058$.		2
280	Spectral Characteristics of Light Harvesting, Electron Injection, and Steady-State Charge Collection in Pressed TiO ₂ Dye Solar Cells. Journal of Physical Chemistry C, 2008, 112, 5623-5637.	1.5	163
281	Initial Performance of Dye Solar Cells on Stainless Steel Substrates. Journal of Physical Chemistry C, 2008, 112, 4011-4017.	1.5	54
282	Regenerative effects by temperature variations in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1733-1742.	3.0	37
283	The link between political decision-making and energy options: Assessing future role of renewable energy and energy efficiency in Finland. Energy, 2007, 32, 2271-2281.	4.5	42
284	Effectiveness of policy measures in transforming the energy system. Energy Policy, 2007, 35, 627-639.	4.2	42
285	Effects of large-scale photovoltaic power integration on electricity distribution networks. Renewable Energy, 2007, 32, 216-234.	4.3	210
286	Upfront resource requirements for large-scale exploitation schemes of new renewable technologies. Renewable Energy, 2007, 32, 442-458.	4.3	20
287	Impacts of EU carbon emission trade directive on energy-intensive industries — Indicative micro-economic analyses. Ecological Economics, 2007, 63, 799-806.	2.9	82
288	Data filtering methods for determining performance parameters in photovoltaic module field tests. Progress in Photovoltaics: Research and Applications, 2006, 14, 329-340.	4.4	4

#	Article	IF	Citations
289	Release the power of the public purse. Energy Policy, 2006, 34, 238-250.	4.2	8
290	Absorption and desorption of water in glass/ethylene-vinyl-acetate/glass laminates. Polymer Testing, 2006, 25, 615-622.	2.3	12
291	Performance of planar free-breathing PEMFC at temperatures below freezing. Journal of Power Sources, 2006, 154, 86-94.	4.0	17
292	Moisture sensor at glass/polymer interface for monitoring of photovoltaic module encapsulants. Sensors and Actuators A: Physical, 2006, 125, 281-287.	2.0	14
293	Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates. Solar Energy Materials and Solar Cells, 2006, 90, 872-886.	3.0	73
294	Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates. Solar Energy Materials and Solar Cells, 2006, 90, 887-899.	3.0	100
295	Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures. Solar Energy Materials and Solar Cells, 2006, 90, 2881-2893.	3.0	97
296	Market penetration rates of new energy technologies. Energy Policy, 2006, 34, 3317-3326.	4.2	92
297	A model for generating household electricity load profiles. International Journal of Energy Research, 2006, 30, 273-290.	2.2	398
298	Analysis of energy technology changes and associated costs. International Journal of Energy Research, 2006, 30, 967-984.	2.2	6
299	Estimating thermal stress in BIPV modules. International Journal of Energy Research, 2006, 30, 1264-1277.	2.2	7
300	Basic parametric study of a proton exchange membrane fuel cell. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2006, 220, 847-853.	0.8	8
301	Degradation of unglazed rough graphite-aluminium solar absorber surfaces in simulated acid and neutral rain. Solar Energy, 2005, 78, 41-48.	2.9	7
302	Sizing and applicability considerations of solar combisystems. Solar Energy, 2005, 78, 59-71.	2.9	34
303	Towards corrosion testing of unglazed solar absorber surfaces in simulated acid rain. Solar Energy Materials and Solar Cells, 2005, 89, 185-195.	3.0	2
304	Effect of energy storage on variations in wind power. Wind Energy, 2005, 8, 421-441.	1.9	102
305	Thermal stability and moisture resistance of C/Al2O3/Al solar absorber surfaces. Solar Energy Materials and Solar Cells, 2004, 82, 361-373.	3.0	14
306	Physical interpretation of impacts from a low-cost manufacturing process on the surface microstructure of a novel solar absorber. Solar Energy Materials and Solar Cells, 2004, 84, 171-181.	3.0	0

#	Article	IF	CITATIONS
307	Microstructural optimization and extended durability studies of low-cost rough graphite–aluminium solar absorber surfaces. Renewable Energy, 2004, 29, 823-839.	4.3	17
308	Evaluation of planar free-breathing polymer electrolyte membrane fuel cell design. Journal of Power Sources, 2004, 129, 68-72.	4.0	69
309	Effect of cathode structure on planar free-breathing PEMFC. Journal of Power Sources, 2004, 138, 205-210.	4.0	57
310	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 265-271.	1.5	66
311	Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell. Journal of Applied Electrochemistry, 2003, 33, 979-987.	1.5	35
312	Microstructural analysis of selective C/Al2O3/Al solar absorber surfaces. Thin Solid Films, 2003, 425, 24-30.	0.8	18
313	Mechanically manufactured selective solar absorber surfaces. Solar Energy Materials and Solar Cells, 2003, 79, 273-283.	3.0	53
314	Titanium sinter as gas diffusion backing in PEMFC. Journal of Power Sources, 2003, 118, 183-188.	4.0	43
315	Measurement of current distribution in a free-breathing PEMFC. Journal of Power Sources, 2002, 106, 304-312.	4.0	162
316	Measurement of ohmic voltage losses in individual cells of a PEMFC stack. Journal of Power Sources, 2002, 112, 261-272.	4.0	105
317	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 1081-1089.	1.5	44
318	Daylight optimization of multifunctional solar facades. Solar Energy, 2000, 68, 223-235.	2.9	37
319	Hysteresis in Ce-based AB5-type metal hydrides. Journal of Materials Science, 2000, 35, 133-137.	1.7	13
320	High-pressure AB2 metal hydrides with low hysteresis. Journal of Materials Science, 2000, 35, 127-131.	1.7	12
321	Combined hydrogen compressing and heat transforming through metal hydrides. International Journal of Hydrogen Energy, 1999, 24, 441-448.	3.8	34
322	Multivariate optimization of design trade-offs for solar low energy buildings. Energy and Buildings, 1999, 29, 189-205.	3.1	76
323	Effect of substitution on hysteresis in some high-pressure AB2 and AB5 metal hydrides. Journal of Alloys and Compounds, 1999, 293-295, 67-73.	2.8	22
324	Electrolyser-metal hydride-fuel cell system for seasonal energy storage. International Journal of Hydrogen Energy, 1998, 23, 267-271.	3.8	30

#	Article	IF	CITATIONS
325	AB2 metal hydrides for high-pressure and narrow temperature interval applications. Journal of Alloys and Compounds, 1998, 269, 288-293.	2.8	36
326	Operation experiences of a phosphoric acid fuel cell in a solar hydrogen energy system. International Journal of Hydrogen Energy, 1997, 22, 707-713.	3.8	25
327	Pressure DSC studies on the formation and reproducibility of double peaks in the sorption of LaNi5-H2 during thermal cycling. Thermochimica Acta, 1997, 298, 141-147.	1.2	6
328	Coupling the PV array with a standard uninterruptible power supply (UPS) system in commercial buildings. Progress in Photovoltaics: Research and Applications, 1996, 4, 315-320.	4.4	0
329	Feasibility study of a metal hydride hydrogen store for a self-sufficient solar hydrogen energy system. International Journal of Hydrogen Energy, 1996, 21, 213-221.	3.8	19
330	Computational approaches for improving seasonal storage systems based on hydrogen technologies. International Journal of Hydrogen Energy, 1995, 20, 575-585.	3.8	33
331	Metal hydride hydrogen storage for near-ambient temperature and atmospheric pressure applications, a PDSC study. International Journal of Hydrogen Energy, 1995, 20, 897-909.	3.8	35
332	The energy storage problem in low energy buildings. Solar Energy, 1994, 52, 67-74.	2.9	3
333	Optimal sizing of grid-connected PV-systems for different climates and array orientations: a simulation study. Solar Energy Materials and Solar Cells, 1994, 35, 445-451.	3.0	40
334	Optimal sizing of solar array and inverter in grid-connected photovoltaic systems. Solar Energy Materials and Solar Cells, 1994, 32, 95-114.	3.0	36
335	Development of a self-sufficient solar-hydrogen energy system. International Journal of Hydrogen Energy, 1994, 19, 99-106.	3.8	42
336	Modeling and simulation of aquifer storage energy systems. Solar Energy, 1994, 53, 237-247.	2.9	35
337	Simulation of solar hydrogen energy systems. Solar Energy, 1994, 53, 267-278.	2.9	29
338	Control of battery backed photovoltaic hydrogen production. International Journal of Hydrogen Energy, 1993, 18, 383-390.	3.8	18
339	Comparison of analytical and numerical modeling approaches for sizing of seasonal storage solar heating systems. Solar Energy, 1992, 48, 267-273.	2.9	6
340	SOLCHIPSâ€"A fast predesign and optimization tool for solar heating with seasonal storage. Solar Energy, 1992, 48, 291-300.	2.9	15
341	A multicomponent PCM wall optimized for passive solar heating. Energy and Buildings, 1991, 17, 259-270.	3.1	274
342	Optimization of stand-alone photovoltaic systems with hydrogen storage for total energy self-sufficiency. International Journal of Hydrogen Energy, 1991, 16, 735-740.	3.8	23

#	Article	IF	Citations
343	An organic PCM storage system with adjustable melting temperature. Solar Energy, 1991, 46, 275-278.	2.9	90
344	A general design methodology for seasonal storage solar systems. Solar Energy, 1989, 42, 235-251.	2.9	16
345	Effect of climate on major CSHPSS design parameters. Solar Energy, 1989, 42, 487-494.	2.9	3
346	Effect of storage thermal behavior in seasonal storage solar heating systems. Solar Energy, 1988, 40, 249-258.	2.9	8
347	Verification of a CSHPSS simulation program with emphasis on system control. Solar Energy, 1987, 39, 513-519.	2.9	3
348	Economic analysis of heat storage in energy systems. International Journal of Energy Research, 1987, 11, 85-94.	2.2	5
349	Computational simulation of district solar heating systems with seasonal thermal energy storage. Solar Energy, 1986, 36, 397-408.	2.9	9
350	Dynamic effects in a salinity-gradient solar-pond heating system. Applied Energy, 1985, 20, 189-205.	5.1	3
351	Optimization of operating strategies in a community solar heating system. Applied Mathematical Modelling, 1985, 9, 117-124.	2.2	5
352	On the effects of solar radiation variations on solar heating system performances. International Journal of Energy Research, 1985, 9, 53-64.	2.2	2
353	A numerical model for seasonal storage of solar heat in the ground by vertical pipes. Solar Energy, 1985, 34, 351-366.	2.9	35
354	Radiation transmission measurements for solar ponds. Solar Energy, 1984, 33, 237-240.	2.9	26
355	Optimization of a community solar heating system with a heat pump and seasonal storage. Solar Energy, 1984, 33, 353-361.	2.9	9
356	Feasibility of solar pond heating for northern cold climates. Solar Energy, 1984, 33, 209-215.	2.9	21
357	Determination of reactor neutron spectra with multicomponent activation detectors. Journal of Radioanalytical Chemistry, 1983, 76, 151-170.	0.5	4
358	Simulation studies of the expected performance of Kerava solar village. International Journal of Energy Research, 1983, 7, 347-357.	2.2	14
359	Net energy analysis of district solar heating with seasonal heat storage. Energy, 1983, 8, 813-819.	4.5	4
360	From identification of electrolyte degradation rates to lifetime estimations in dye solar cells with iodine and cobalt redox couples. , 0 , , .		2