Riccardo DeSalvo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4702273/publications.pdf

Version: 2024-02-01

32 papers

15,515 citations

331670 21 h-index 32 g-index

32 all docs 32 docs citations

32 times ranked 12989 citing authors

#	Article	IF	CITATIONS
1	Angled beam expander telescopes for the Michelson beams in third generation gravitational wave observatories. Classical and Quantum Gravity, 2022, 39, 045008.	4.0	1
2	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
3	Lunar Gravitational-wave Antenna. Astrophysical Journal, 2021, 910, 1.	4.5	41
4	Emergence and Evolution of Crystallization in TiO2 Thin Films: A Structural and Morphological Study. Nanomaterials, 2021, 11, 1409.	4.1	20
5	Crystallization in Zirconia Film Nano-Layered with Silica. Nanomaterials, 2021, 11, 3444.	4.1	4
6	Site-selection criteria for the Einstein Telescope. Review of Scientific Instruments, 2020, 91, 094504.	1.3	32
7	Stepped beam pipes and helical baffles for scattered light absorption in future gravitational wave detectors. Review of Scientific Instruments, 2020, 91, 054505.	1.3	1
8	Optical scattering measurements and implications on thermal noise in Gravitational Wave detectors test-mass coatings. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2259-2264.	2.1	6
9	A Multi-Step Approach to Assessing LIGO Test Mass Coatings. Journal of Physics: Conference Series, 2018, 957, 012010.	0.4	2
10	Construction of KAGRA: an underground gravitational-wave observatory. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	73
11	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
12	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
13	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
14	Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1202-1205.	2.1	3
15	Material loss angles from direct measurements of broadband thermal noise. Physical Review D, 2015, 91, .	4.7	24
16	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
17	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
18	Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method. Optics Express, 2014, 22, 29847.	3.4	36

#	Article	IF	CITATIONS
19	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
20	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
21	The role of Self-Organized Criticality in elasticity of metallic springs: Observations of a new dissipation regime. European Physical Journal Plus, 2011, 126, 1.	2.6	8
22	Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota. Classical and Quantum Gravity, 2010, 27, 225011.	4.0	26
23	A xylophone configuration for a third-generation gravitational wave detector. Classical and Quantum Gravity, 2010, 27, 015003.	4.0	141
24	Measurement of thermal noise in multilayer coatings with optimized layer thickness. Physical Review D, 2010, 81, .	4.7	55
25	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
26	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
27	Extended-time-scale creep measurement on Maraging cantilever blade springs. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 593, 597-607.	1.6	8
28	Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator. Applied Optics, 2007, 46, 6648.	2.1	35
29	Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 556, 616-623.	1.6	59
30	Study of quality factor and hysteresis associated with the state-of-the-art passive seismic isolation system for Gravitational Wave Interferometric Detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 538, 526-537.	1.6	14
31	Monolithic geometric anti-spring blades. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 540, 502-519.	1.6	55
32	Anatomy of the TAMA SAS seismic attenuation system. Classical and Quantum Gravity, 2002, 19, 1605-1614.	4.0	35