
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4698065/publications.pdf Version: 2024-02-01

<u>ΡÃ</u>@μνΙΡετιτ

#	Article	IF	CITATIONS
1	Asymmetric character displacement in mixed oak stands. New Phytologist, 2022, 236, 1212-1224.	7.3	9
2	Revisiting pollination mode in chestnut (<i>Castanea spp</i> .): an integrated approach. Botany Letters, 2021, 168, 348-372.	1.4	26
3	Efficient monitoring of phenology in chestnuts. Scientia Horticulturae, 2021, 281, 109958.	3.6	17
4	An intensive study plot to investigate chestnut tree reproduction. Annals of Forest Science, 2021, 78, 1.	2.0	4
5	The oak syngameon: more than the sum of its parts. New Phytologist, 2020, 226, 978-983.	7.3	81
6	Microhaplotype genotyping-by-sequencing of 98 highly polymorphic markers in three chestnut tree species. Conservation Genetics Resources, 2020, 12, 567-580.	0.8	5
7	Chloroplast DNA variation in a hyperdiverse tropical tree community. Ecology and Evolution, 2019, 9, 4897-4905.	1.9	13
8	Low genetic differentiation between two morphologically and ecologically distinct giant-leaved Mexican oaks. Plant Systematics and Evolution, 2019, 305, 89-101.	0.9	16
9	Inconsistent interspecific and intraspecific differentiation of climate envelopes in a subtropical tree. Journal of Plant Ecology, 2019, 12, 176-185.	2.3	3
10	Invoking adaptation to decipher the genetic legacy of past climate change. Ecology, 2018, 99, 1530-1546.	3.2	72
11	Genetic divergence within the monotypic tree genus Platycarya (Juglandaceae) and its implications for species' past dynamics in subtropical China. Tree Genetics and Genomes, 2017, 13, 1.	1.6	11
12	Demographic and spatial determinants of hybridization rate. Journal of Ecology, 2017, 105, 29-38.	4.0	26
13	Does the geography of cork oak origin influence budburst and leaf pest damage?. Forest Ecology and Management, 2016, 373, 33-43.	3.2	24
14	Impacts of local adaptation of forest trees on associations with herbivorous insects: implications for adaptive forest management. Evolutionary Applications, 2015, 8, 972-987.	3.1	29
15	History of Larix decidua Mill. (European larch) since 130Âka. Quaternary Science Reviews, 2015, 124, 224-247.	3.0	34
16	Within-Range Translocations and Their Consequences in European Larch. PLoS ONE, 2015, 10, e0127516.	2.5	22
17	Beyond skepticism: uncovering cryptic refugia using multiple lines of evidence. New Phytologist, 2014, 204, 450-454.	7.3	24
18	Cryptic no more: soil macrofossils uncover Pleistocene forest microrefugia within a periglacial desert. New Phytologist, 2014, 204, 715-729.	7.3	54

#	Article	IF	CITATIONS
19	Distinct male reproductive strategies in two closely related oak species. Molecular Ecology, 2014, 23, 4331-4343.	3.9	22
20	Stronger spatial genetic structure in recolonized areas than in refugia in the <scp>E</scp> uropean beech. Molecular Ecology, 2013, 22, 4397-4412.	3.9	80
21	Efficient mitigation of founder effects during the establishment of a leading-edge oak population. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131070.	2.6	41
22	Fineâ€scale environmental control of hybridization in oaks. Molecular Ecology, 2013, 22, 423-436.	3.9	54
23	Outlier loci highlight the direction of introgression in oaks. Molecular Ecology, 2013, 22, 450-462.	3.9	82
24	Putting the Biological Species Concept to the Test: Using Mating Networks to Delimit Species. PLoS ONE, 2013, 8, e68267.	2.5	8
25	Detecting the footprints of divergent selection in oaks with linked markers. Heredity, 2012, 109, 361-371.	2.6	21
26	Multiplexed microsatellite markers for genetic studies of beech. Molecular Ecology Resources, 2012, 12, 484-491.	4.8	31
27	Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Molecular Ecology Resources, 2012, 12, 717-725.	4.8	26
28	Two highly validated multiplexes (12â€plex and 8â€plex) for species delimitation and parentage analysis in oaks (<i>Quercus spp</i> .). Molecular Ecology Resources, 2011, 11, 578-585.	4.8	68
29	Current trends in microsatellite genotyping. Molecular Ecology Resources, 2011, 11, 591-611.	4.8	676
30	Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Molecular Ecology, 2011, 20, 4995-5011.	3.9	114
31	Direction and extent of organelle DNA introgression between two spruce species in the Qinghaiâ€ībetan Plateau. New Phytologist, 2011, 192, 1024-1033.	7.3	88
32	Early insights into the genetic consequences of range expansions. Heredity, 2011, 106, 203-204.	2.6	19
33	Spatio-temporal functional regression on paleoecological data. Journal of Applied Statistics, 2011, 38, 695-704.	1.3	13
34	Sex-biased dispersal promotes adaptive parental effects. BMC Evolutionary Biology, 2010, 10, 217.	3.2	17
35	Cryptic forest refugia on the †Roof of the World'. New Phytologist, 2010, 185, 5-7.	7.3	14
36	Origin of spatial genetic structure in an expanding oak population. Molecular Ecology, 2010, 19, 459-471.	3.9	42

#	Article	IF	CITATIONS
37	The â€~New Wave' in plant demographic inference: more loci and more individuals. Molecular Ecology, 2010, 19, 1075-1078.	3.9	9
38	Historical and contemporary dynamics of adaptive differentiation in European oaks. , 2010, , 101-122.		29
39	Exploring Species Limits in Two Closely Related Chinese Oaks. PLoS ONE, 2010, 5, e15529.	2.5	56
40	Relevance of genetics for conservation policies: the case of Minorcan cork oaks. Annals of Botany, 2009, 104, 1069-1076.	2.9	16
41	Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology, 2009, 9, 177.	3.2	161
42	More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the <i>Picea asperata</i> complex in China, and comparison with other Conifers. Molecular Ecology, 2009, 18, 1396-1407.	3.9	146
43	Species relative abundance and direction of introgression in oaks. Molecular Ecology, 2009, 18, 2228-2242.	3.9	296
44	Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity, 2009, 102, 442-452.	2.6	148
45	Paleoecology meets genetics: deciphering past vegetational dynamics. Frontiers in Ecology and the Environment, 2009, 7, 371-379.	4.0	125
46	Gene flow and species delimitation. Trends in Ecology and Evolution, 2009, 24, 386-393.	8.7	682
47	Genetic Consequences of Range Expansions. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 481-501.	8.3	1,072
48	Multilevel Control of Organelle DNA Sequence Length in Plants. Journal of Molecular Evolution, 2008, 66, 405-415.	1.8	6
49	Spatial Scales of Pollen and Seed-Mediated Gene Flow in Tropical Rain Forest Trees. Tropical Plant Biology, 2008, 1, 20-33.	1.9	250
50	GENETICALLY DEPAUPERATE BUT WIDESPREAD: THE CASE OF AN EMBLEMATIC MEDITERRANEAN PINE. Evolution; International Journal of Organic Evolution, 2008, 62, 680-688.	2.3	128
51	THE HIDDEN SIDE OF INVASIONS: MASSIVE INTROGRESSION BY LOCAL GENES. Evolution; International Journal of Organic Evolution, 2008, 62, ???-???.	2.3	658
52	Local spread of the invasive <i>Cyperus esculentus</i> (Cyperaceae) inferred using molecular genetic markers. Weed Research, 2008, 48, 19-27.	1.7	26
53	On the falsifiability of the nested clade phylogeographic analysis method. Molecular Ecology, 2008, 17, 1404-1404.	3.9	97
54	Forests of the Past: A Window to Future Changes. Science, 2008, 320, 1450-1452.	12.6	224

#	Article	IF	CITATIONS
55	Can Population Genetic Structure Be Predicted from Lifeâ€History Traits?. American Naturalist, 2007, 169, 662-672.	2.1	235
56	Plant phylogeography based on organelle genes: an introduction. , 2007, , 23-97.		72
57	The coup de grâce for the nested clade phylogeographic analysis?. Molecular Ecology, 2007, 17, 071026202933002-???.	3.9	41
58	Ever deeper phylogeographies: trees retain the genetic imprint of Tertiary plate tectonics. Molecular Ecology, 2007, 16, 5113-5114.	3.9	23
59	Variation in wood volatile compounds in a mixed oak stand: strong species and spatial differentiation in whisky-lactone content. Annals of Forest Science, 2007, 64, 313-320.	2.0	30
60	Pines as Invasive Aliens: Outlook on Transgenic Pine Plantations in the Southern Hemisphere. Managing Forest Ecosystems, 2006, , 169-188.	0.9	8
61	Some Evolutionary Consequences of Being a Tree. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 187-214.	8.3	919
62	Genetic analysis of archaeological wood remains: first results and prospects. Journal of Archaeological Science, 2006, 33, 1216-1227.	2.4	21
63	Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. Journal of Evolutionary Biology, 2006, 19, 12-20.	1.7	180
64	A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist, 2006, 171, 199-221.	7.3	757
65	Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Molecular Ecology, 2006, 15, 2007-2012.	3.9	93
66	Blind population genetics survey of tropical rainforest trees. Molecular Ecology, 2006, 15, 3505-3513.	3.9	63
67	Contrasting patterns of historical colonization in white oaks (Quercusspp.) in California and Europe. Molecular Ecology, 2006, 15, 4085-4093.	3.9	89
68	lce-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12447-12450.	7.1	227
69	Authenticated DNA from Ancient Wood Remains. Annals of Botany, 2006, 98, 1107-1111.	2.9	46
70	Ancient plant DNA: review and prospects. New Phytologist, 2005, 166, 409-418.	7.3	148
71	Conserving biodiversity under climate change: the rear edge matters. Ecology Letters, 2005, 8, 461-467.	6.4	1,743
72	Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Molecular Ecology, 2005, 14, 513-524.	3.9	77

#	Article	IF	CITATIONS
73	Standardizing for microsatellite length in comparisons of genetic diversity. Molecular Ecology, 2005, 14, 885-890.	3.9	48
74	Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs. Journal of Biogeography, 2005, 32, 329-339.	3.0	67
75	Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conservation Genetics, 2005, 6, 259-273.	1.5	127
76	Climate changes and tree phylogeography in the Mediterranean. Taxon, 2005, 54, 877-885.	0.7	184
77	Climate Changes and Tree Phylogeography in the Mediterranean. Taxon, 2005, 54, 877.	0.7	153
78	Reticulate evolution in kiwifruit (<i>Actinidia</i> , Actinidiaceae) identified by comparing their maternal and paternal phylogenies. American Journal of Botany, 2004, 91, 736-747.	1.7	86
79	Biological invasions at the gene level. Diversity and Distributions, 2004, 10, 159-165.	4.1	100
80	INVITED REVIEW: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology, 2004, 14, 689-701.	3.9	790
81	Ancient DNA – unlocking plants' fossil secrets. New Phytologist, 2004, 161, 335-339.	7.3	22
82	Hybridization as a mechanism of invasion in oaks. New Phytologist, 2004, 161, 151-164.	7.3	356
83	Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations. Forest Ecology and Management, 2004, 197, 117-137.	3.2	156
84	DNA-based control of oak wood geographic origin in the context of the cooperage industry. Annals of Forest Science, 2004, 61, 97-104.	2.0	43
85	Use of chloroplast microsatellites to differentiate oak populations. Annals of Forest Science, 2004, 61, 825-830.	2.0	39
86	Title is missing!. Conservation Genetics, 2003, 4, 47-56.	1.5	105
87	Glacial Refugia: Hotspots But Not Melting Pots of Genetic Diversity. Science, 2003, 300, 1563-1565.	12.6	1,569
88	Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Molecular Ecology, 2003, 12, 1487-1495.	3.9	156
89	Checking the geographical origin of oak wood: molecular and statistical tools. Molecular Ecology, 2003, 12, 1629-1636.	3.9	63
90	Rangewide phylogeography of a birdâ€dispersed Eurasian shrub: contrasting Mediterranean and temperate glacial refugia. Molecular Ecology, 2003, 12, 3415-3426.	3.9	151

#	Article	IF	CITATIONS
91	A set of primers for the amplification of chloroplast microsatellites inQuercus. Molecular Ecology Notes, 2003, 3, 24-27.	1.7	75
92	A one–step organelle capture: gynogenetic kiwifruits with paternal chloroplasts. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 783-789.	2.6	8
93	A Case of Chloroplast Heteroplasmy in Kiwifruit (Actinidia deliciosa) That Is Not Transmitted During Sexual Reproduction. , 2002, 93, 293-300.		33
94	Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1039-1046.	2.6	124
95	Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management, 2002, 156, 49-74.	3.2	577
96	Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks?. Forest Ecology and Management, 2002, 156, 75-87.	3.2	101
97	Chloroplast DNA variation of white oaks in Italy. Forest Ecology and Management, 2002, 156, 103-114.	3.2	72
98	Chloroplast DNA variation of oaks in France and the influence of forest fragmentation on genetic diversity. Forest Ecology and Management, 2002, 156, 115-129.	3.2	70
99	Chloroplast DNA variation of white oaks in the alpine region. Forest Ecology and Management, 2002, 156, 131-145.	3.2	38
100	Chloroplast DNA variation of oaks in western Central Europe and genetic consequences of human influences. Forest Ecology and Management, 2002, 156, 147-166.	3.2	58
101	Chloroplast DNA variation of white oaks in northern Balkans and in the Carpathian Basin. Forest Ecology and Management, 2002, 156, 197-209.	3.2	60
102	Chloroplast DNA variation of white oak in the Baltic countries and Poland. Forest Ecology and Management, 2002, 156, 211-222.	3.2	20
103	Chloroplast DNA variation in European white oaks. Forest Ecology and Management, 2002, 156, 5-26.	3.2	424
104	Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Molecular Ecology, 2002, 11, 1351-1362.	3.9	112
105	A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes, 2002, 2, 428-430.	1.7	83
106	Optimal Randomization Strategies When Testing the Existence of a Phylogeographic Structure. Genetics, 2002, 161, 469-471.	2.9	66
107	SCS–Spatial Genetic Software: A Computer Program for Analysis of Spatial Genetic and Phenotypic Structures of Individuals and Populations. , 2001, 92, 447-448.		130
108	Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theoretical and Applied Genetics, 2001, 102, 97-103.	3.6	54

#	Article	IF	CITATIONS
109	POLLEN- VERSUS SEED-MEDIATED GENE FLOW IN A SCATTERED FOREST TREE SPECIES. Evolution; International Journal of Organic Evolution, 2001, 55, 1123-1135.	2.3	96
110	Frequent cytoplasmic exchanges between oak species that are not closely related:Quercus suberandQ. ilexin Morocco. Molecular Ecology, 2001, 10, 2003-2012.	3.9	128
111	Spatial and temporal distribution of chloroplast DNA polymorphism in a tropical tree species. Molecular Ecology, 2000, 9, 1089-1098.	3.9	59
112	Genetic variability of a scattered temperate forest tree: Sorbus torminalis L. (Crantz). Annals of Forest Science, 2000, 57, 63-71.	2.0	40
113	Chloroplast DNA variation in a rainforest tree (Aucoumea klaineana, Burseraceae) in Gabon. Molecular Ecology, 2000, 9, 359.	3.9	39
114	Provenance hybridization in a diallel mating scheme of maritime pine (<i>Pinus pinaster</i>). II. Heterosis. Canadian Journal of Forest Research, 2000, 30, 10-16.	1.7	11
115	Provenance hybridization in a diallel mating scheme of maritime pine (<i>Pinus pinaster</i>). II. Heterosis. Canadian Journal of Forest Research, 2000, 30, 10-16.	1.7	5
116	High level of variation at Abies alba chloroplast microsatellite loci in Europe. Molecular Ecology, 1999, 8, 1117-1126.	3.9	147
117	Rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera:) Tj ETQq1 1 0.7843	314 rgBT /	Overlock 10 1 218
118	Amplification of oak DNA from ancient and modern wood. Molecular Ecology, 1999, 8, 2137-2140.	3.9	86
119	Strict paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in in intraspecific crosses of kiwifruit. Theoretical and Applied Genetics, 1999, 99, 314-322.	3.6	63
120	ARE CHLOROPLAST AND MITOCHONDRIAL DNA VARIATION SPECIES INDEPENDENT IN OAKS?. Evolution; International Journal of Organic Evolution, 1999, 53, 1406-1413.	2.3	74
121	Bootstrap variance of diversity and differentiation estimators in a subdivided population. Heredity, 1998, 80, 56-61.	2.6	12
122	Association between obleven lest and with shandwid lines were in sole. Malesular Dislam, and		
	Association between chloroplast and mitochondrial lineages in oaks. Molecular Biology and Evolution, 1998, 15, 1321-1331.	8.9	76
123	Association between chloroplast and mitochondrial ineages in oaks. Molecular Biology and Evolution, 1998, 15, 1321-1331. Identifying Populations for Conservation on the Basis of Genetic Markers. Conservation Biology, 1998, 12, 844-855.	8.9 4.7	76 1,276
123 124	Evolution, 1998, 15, 1321-1331. Identifying Populations for Conservation on the Basis of Genetic Markers. Conservation Biology, 1998,		
	Evolution, 1998, 15, 1321-1331. Identifying Populations for Conservation on the Basis of Genetic Markers. Conservation Biology, 1998, 12, 844-855. Colonization with long-distance seed dispersal and genetic structure of maternally inherited genes in	4.7	1,276

#	ARTICLE	IF	CITATIONS
127	Contribution of two-dimensional electrophoresis of proteins to maritime pine genetics. Annales Des Sciences Forestières, 1997, 54, 225-236.	1.2	17
128	Mating System and Asymmetric Hybridization in a Mixed Stand of European Oaks. Evolution; International Journal of Organic Evolution, 1996, 50, 900.	2.3	76
129	Chloroplast DNA Phylogeography of the Common Beech (Fagus sylvatica L.) in Europe. Evolution; International Journal of Organic Evolution, 1996, 50, 2515.	2.3	132
130	MATING SYSTEM AND ASYMMETRIC HYBRIDIZATION IN A MIXED STAND OF EUROPEAN OAKS. Evolution; International Journal of Organic Evolution, 1996, 50, 900-908.	2.3	120
131	Chloroplast DNA phylogeography of the argan tree of Morocco. Molecular Ecology, 1996, 5, 547-555.	3.9	184
132	High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics, 1996, 92, 832-839.	3.6	1,330
133	A set of universal primers for amplification of polymorphic nonâ€coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology, 1995, 4, 129-134.	3.9	1,042
134	Genetic polymorphism in maritime pine (Pinus pinaster Ait.) assessed by two-dimensional gel electrophoresis of needle, bud, and pollen proteins. Journal of Molecular Evolution, 1995, 41, 231.	1.8	28
135	Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics, 1995, 91, 1253-1256.	3.6	424
136	Estimation, variance and optimal sampling of gene diversity. Theoretical and Applied Genetics, 1995, 90, 462-470.	3.6	271
137	Comparison of genetic differentiation in maritime pine (Pinus pinaster Ait.) estimated using isozyme, total protein and terpenic loci. Heredity, 1995, 75, 382-389.	2.6	58
138	Geographic structure of chloroplast DNA polymorphisms in European oaks. Theoretical and Applied Genetics, 1993, 87, 122-128.	3.6	204
139	Finite island model for organelle and nuclear genes in plants. Heredity, 1993, 71, 630-641.	2.6	183
140	Development of highly validated SNP markers for genetic analyses of chestnut species. Conservation Genetics Resources, 0, , 1.	0.8	4
141	Confirmation that chestnuts are insect-pollinated. Botany Letters, 0, , 1-5.	1.4	4