Rémy J Petit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4698065/publications.pdf

Version: 2024-02-01

141 papers 24,457 citations

68 h-index 138 g-index

145 all docs 145 docs citations

145 times ranked 16995 citing authors

#	Article	IF	CITATIONS
1	Conserving biodiversity under climate change: the rear edge matters. Ecology Letters, 2005, 8, 461-467.	6.4	1,743
2	Glacial Refugia: Hotspots But Not Melting Pots of Genetic Diversity. Science, 2003, 300, 1563-1565.	12.6	1,569
3	High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics, 1996, 92, 832-839.	3.6	1,330
4	Identifying Populations for Conservation on the Basis of Genetic Markers. Conservation Biology, 1998, 12, 844-855.	4.7	1,276
5	Genetic Consequences of Range Expansions. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 481-501.	8.3	1,072
6	A set of universal primers for amplification of polymorphic non oding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology, 1995, 4, 129-134.	3.9	1,042
7	Some Evolutionary Consequences of Being a Tree. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 187-214.	8.3	919
8	INVITED REVIEW: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology, 2004, 14, 689-701.	3.9	790
9	A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist, 2006, 171, 199-221.	7.3	757
10	Gene flow and species delimitation. Trends in Ecology and Evolution, 2009, 24, 386-393.	8.7	682
11	Current trends in microsatellite genotyping. Molecular Ecology Resources, 2011, 11, 591-611.	4.8	676
12	THE HIDDEN SIDE OF INVASIONS: MASSIVE INTROGRESSION BY LOCAL GENES. Evolution; International Journal of Organic Evolution, 2008, 62, ???-???.	2.3	658
13	Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management, 2002, 156, 49-74.	3.2	577
14	Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics, 1995, 91, 1253-1256.	3.6	424
15	Chloroplast DNA variation in European white oaks. Forest Ecology and Management, 2002, 156, 5-26.	3.2	424
16	Chloroplast DNA footprints of postglacial recolonization by oaks. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9996-10001.	7.1	395
17	Hybridization as a mechanism of invasion in oaks. New Phytologist, 2004, 161, 151-164.	7.3	356
18	An enlarged set of consensus primers for the study of organelle DNA in plants. Molecular Ecology, 1997, 6, 393-397.	3.9	330

#	Article	IF	Citations
19	Species relative abundance and direction of introgression in oaks. Molecular Ecology, 2009, 18, 2228-2242.	3.9	296
20	Estimation, variance and optimal sampling of gene diversity. Theoretical and Applied Genetics, 1995, 90, 462-470.	3.6	271
21	Spatial Scales of Pollen and Seed-Mediated Gene Flow in Tropical Rain Forest Trees. Tropical Plant Biology, 2008, 1, 20-33.	1.9	250
22	Can Population Genetic Structure Be Predicted from Lifeâ€History Traits?. American Naturalist, 2007, 169, 662-672.	2.1	235
23	Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12447-12450.	7.1	227
24	Forests of the Past: A Window to Future Changes. Science, 2008, 320, 1450-1452.	12.6	224
25	Rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera:) Tj ETQq1 1 0.7843	314 rgBT /	Overlock 10
26	Geographic structure of chloroplast DNA polymorphisms in European oaks. Theoretical and Applied Genetics, 1993, 87, 122-128.	3.6	204
27	Chloroplast DNA phylogeography of the argan tree of Morocco. Molecular Ecology, 1996, 5, 547-555.	3.9	184
28	Climate changes and tree phylogeography in the Mediterranean. Taxon, 2005, 54, 877-885.	0.7	184
29	Finite island model for organelle and nuclear genes in plants. Heredity, 1993, 71, 630-641.	2.6	183
30	Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. Journal of Evolutionary Biology, 2006, 19, 12-20.	1.7	180
31	Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology, 2009, 9, 177.	3.2	161
32	Colonization with long-distance seed dispersal and genetic structure of maternally inherited genes in forest trees: a simulation study. Genetical Research, 1997, 69, 117-125.	0.9	160
33	Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Molecular Ecology, 2003, 12, 1487-1495.	3.9	156
34	Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations. Forest Ecology and Management, 2004, 197, 117-137.	3.2	156
35	Climate Changes and Tree Phylogeography in the Mediterranean. Taxon, 2005, 54, 877.	0.7	153
36	Rangewide phylogeography of a birdâ€dispersed Eurasian shrub: contrasting Mediterranean and temperate glacial refugia. Molecular Ecology, 2003, 12, 3415-3426.	3.9	151

#	Article	IF	CITATIONS
37	Ancient plant DNA: review and prospects. New Phytologist, 2005, 166, 409-418.	7.3	148
38	Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity, 2009, 102, 442-452.	2.6	148
39	High level of variation at Abies alba chloroplast microsatellite loci in Europe. Molecular Ecology, 1999, 8, 1117-1126.	3.9	147
40	More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the <i>Picea asperata</i> complex in China, and comparison with other Conifers. Molecular Ecology, 2009, 18, 1396-1407.	3.9	146
41	Chloroplast DNA Phylogeography of the Common Beech (Fagus sylvatica L.) in Europe. Evolution; International Journal of Organic Evolution, 1996, 50, 2515.	2.3	132
42	SGSSpatial Genetic Software: A Computer Program for Analysis of Spatial Genetic and Phenotypic Structures of Individuals and Populations. , 2001, 92, 447-448.		130
43	Frequent cytoplasmic exchanges between oak species that are not closely related:Quercus suberandQ. ilexin Morocco. Molecular Ecology, 2001, 10, 2003-2012.	3.9	128
44	GENETICALLY DEPAUPERATE BUT WIDESPREAD: THE CASE OF AN EMBLEMATIC MEDITERRANEAN PINE. Evolution; International Journal of Organic Evolution, 2008, 62, 680-688.	2.3	128
45	Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conservation Genetics, 2005, 6, 259-273.	1.5	127
46	Paleoecology meets genetics: deciphering past vegetational dynamics. Frontiers in Ecology and the Environment, 2009, 7, 371-379.	4.0	125
47	Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1039-1046.	2.6	124
48	MATING SYSTEM AND ASYMMETRIC HYBRIDIZATION IN A MIXED STAND OF EUROPEAN OAKS. Evolution; International Journal of Organic Evolution, 1996, 50, 900-908.	2.3	120
49	Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Molecular Ecology, 2011, 20, 4995-5011.	3.9	114
50	Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Molecular Ecology, 2002, 11, 1351-1362.	3.9	112
51	Title is missing!. Conservation Genetics, 2003, 4, 47-56.	1.5	105
52	Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks?. Forest Ecology and Management, 2002, 156, 75-87.	3.2	101
53	Biological invasions at the gene level. Diversity and Distributions, 2004, 10, 159-165.	4.1	100
54	On the falsifiability of the nested clade phylogeographic analysis method. Molecular Ecology, 2008, 17, 1404-1404.	3.9	97

#	Article	IF	Citations
55	POLLEN- VERSUS SEED-MEDIATED GENE FLOW IN A SCATTERED FOREST TREE SPECIES. Evolution; International Journal of Organic Evolution, 2001, 55, 1123-1135.	2.3	96
56	Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Molecular Ecology, 2006, 15, 2007-2012.	3.9	93
57	Contrasting patterns of historical colonization in white oaks (Quercusspp.) in California and Europe. Molecular Ecology, 2006, 15, 4085-4093.	3.9	89
58	Direction and extent of organelle DNA introgression between two spruce species in the Qinghaiâ€Tibetan Plateau. New Phytologist, 2011, 192, 1024-1033.	7.3	88
59	Amplification of oak DNA from ancient and modern wood. Molecular Ecology, 1999, 8, 2137-2140.	3.9	86
60	Reticulate evolution in kiwifruit (<i>Actinidia</i> , Actinidiaceae) identified by comparing their maternal and paternal phylogenies. American Journal of Botany, 2004, 91, 736-747.	1.7	86
61	A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes, 2002, 2, 428-430.	1.7	83
62	Outlier loci highlight the direction of introgression in oaks. Molecular Ecology, 2013, 22, 450-462.	3.9	82
63	The oak syngameon: more than the sum of its parts. New Phytologist, 2020, 226, 978-983.	7.3	81
64	Stronger spatial genetic structure in recolonized areas than in refugia in the <scp>E</scp> uropean beech. Molecular Ecology, 2013, 22, 4397-4412.	3.9	80
65	Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Molecular Ecology, 2005, 14, 513-524.	3.9	77
66	Mating System and Asymmetric Hybridization in a Mixed Stand of European Oaks. Evolution; International Journal of Organic Evolution, 1996, 50, 900.	2.3	76
67	Association between chloroplast and mitochondrial lineages in oaks. Molecular Biology and Evolution, 1998, 15, 1321-1331.	8.9	76
68	A set of primers for the amplification of chloroplast microsatellites inQuercus. Molecular Ecology Notes, 2003, 3, 24-27.	1.7	75
69	ARE CHLOROPLAST AND MITOCHONDRIAL DNA VARIATION SPECIES INDEPENDENT IN OAKS?. Evolution; International Journal of Organic Evolution, 1999, 53, 1406-1413.	2.3	74
70	Chloroplast DNA variation of white oaks in Italy. Forest Ecology and Management, 2002, 156, 103-114.	3.2	72
71	Plant phylogeography based on organelle genes: an introduction. , 2007, , 23-97.		72
72	Invoking adaptation to decipher the genetic legacy of past climate change. Ecology, 2018, 99, 1530-1546.	3.2	72

#	Article	IF	Citations
73	Chloroplast DNA variation of oaks in France and the influence of forest fragmentation on genetic diversity. Forest Ecology and Management, 2002, 156, 115-129.	3.2	70
74	Two highly validated multiplexes (12â€plex and 8â€plex) for species delimitation and parentage analysis in oaks (<i>Quercus spp</i>). Molecular Ecology Resources, 2011, 11, 578-585.	4.8	68
75	Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs. Journal of Biogeography, 2005, 32, 329-339.	3.0	67
76	Optimal Randomization Strategies When Testing the Existence of a Phylogeographic Structure. Genetics, 2002, 161, 469-471.	2.9	66
77	Strict paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit. Theoretical and Applied Genetics, 1999, 99, 314-322.	3.6	63
78	Checking the geographical origin of oak wood: molecular and statistical tools. Molecular Ecology, 2003, 12, 1629-1636.	3.9	63
79	Blind population genetics survey of tropical rainforest trees. Molecular Ecology, 2006, 15, 3505-3513.	3.9	63
80	Chloroplast DNA variation of white oaks in northern Balkans and in the Carpathian Basin. Forest Ecology and Management, 2002, 156, 197-209.	3.2	60
81	Spatial and temporal distribution of chloroplast DNA polymorphism in a tropical tree species. Molecular Ecology, 2000, 9, 1089-1098.	3.9	59
82	Comparison of genetic differentiation in maritime pine (Pinus pinaster Ait.) estimated using isozyme, total protein and terpenic loci. Heredity, 1995, 75, 382-389.	2.6	58
83	Chloroplast DNA variation of oaks in western Central Europe and genetic consequences of human influences. Forest Ecology and Management, 2002, 156, 147-166.	3.2	58
84	Exploring Species Limits in Two Closely Related Chinese Oaks. PLoS ONE, 2010, 5, e15529.	2.5	56
85	Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theoretical and Applied Genetics, 2001, 102, 97-103.	3.6	54
86	Fineâ€scale environmental control of hybridization in oaks. Molecular Ecology, 2013, 22, 423-436.	3.9	54
87	Cryptic no more: soil macrofossils uncover Pleistocene forest microrefugia within a periglacial desert. New Phytologist, 2014, 204, 715-729.	7. 3	54
88	Standardizing for microsatellite length in comparisons of genetic diversity. Molecular Ecology, 2005, 14, 885-890.	3.9	48
89	Authenticated DNA from Ancient Wood Remains. Annals of Botany, 2006, 98, 1107-1111.	2.9	46
90	DNA-based control of oak wood geographic origin in the context of the cooperage industry. Annals of Forest Science, 2004, 61, 97-104.	2.0	43

#	Article	IF	CITATIONS
91	Origin of spatial genetic structure in an expanding oak population. Molecular Ecology, 2010, 19, 459-471.	3.9	42
92	The coup de grÃ $^{\c}$ ce for the nested clade phylogeographic analysis? Molecular Ecology, 2007, 17, 071026202933002-???.	3.9	41
93	Efficient mitigation of founder effects during the establishment of a leading-edge oak population. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131070.	2.6	41
94	Genetic variability of a scattered temperate forest tree: Sorbus torminalis L. (Crantz). Annals of Forest Science, 2000, 57, 63-71.	2.0	40
95	Chloroplast DNA variation in a rainforest tree (Aucoumea klaineana, Burseraceae) in Gabon. Molecular Ecology, 2000, 9, 359.	3.9	39
96	Use of chloroplast microsatellites to differentiate oak populations. Annals of Forest Science, 2004, 61, 825-830.	2.0	39
97	Chloroplast DNA variation of white oaks in the alpine region. Forest Ecology and Management, 2002, 156, 131-145.	3.2	38
98	History of Larix decidua Mill. (European larch) since 130Âka. Quaternary Science Reviews, 2015, 124, 224-247.	3.0	34
99	A Case of Chloroplast Heteroplasmy in Kiwifruit (Actinidia deliciosa) That Is Not Transmitted During Sexual Reproduction., 2002, 93, 293-300.		33
100	Multiplexed microsatellite markers for genetic studies of beech. Molecular Ecology Resources, 2012, 12, 484-491.	4.8	31
101	Variation in wood volatile compounds in a mixed oak stand: strong species and spatial differentiation in whisky-lactone content. Annals of Forest Science, 2007, 64, 313-320.	2.0	30
102	Historical and contemporary dynamics of adaptive differentiation in European oaks., 2010,, 101-122.		29
103	Impacts of local adaptation of forest trees on associations with herbivorous insects: implications for adaptive forest management. Evolutionary Applications, 2015, 8, 972-987.	3.1	29
104	Genetic polymorphism in maritime pine (Pinus pinaster Ait.) assessed by two-dimensional gel electrophoresis of needle, bud, and pollen proteins. Journal of Molecular Evolution, 1995, 41, 231.	1.8	28
105	Local spread of the invasive <i>Cyperus esculentus</i> (Cyperaceae) inferred using molecular genetic markers. Weed Research, 2008, 48, 19-27.	1.7	26
106	Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Molecular Ecology Resources, 2012, 12, 717-725.	4.8	26
107	Demographic and spatial determinants of hybridization rate. Journal of Ecology, 2017, 105, 29-38.	4.0	26
108	Revisiting pollination mode in chestnut (<i>Castanea spp</i> .): an integrated approach. Botany Letters, 2021, 168, 348-372.	1.4	26

#	Article	IF	CITATIONS
109	Beyond skepticism: uncovering cryptic refugia using multiple lines of evidence. New Phytologist, 2014, 204, 450-454.	7.3	24
110	Does the geography of cork oak origin influence budburst and leaf pest damage?. Forest Ecology and Management, 2016, 373, 33-43.	3.2	24
111	Ever deeper phylogeographies: trees retain the genetic imprint of Tertiary plate tectonics. Molecular Ecology, 2007, 16, 5113-5114.	3.9	23
112	Ancient DNA – unlocking plants' fossil secrets. New Phytologist, 2004, 161, 335-339.	7. 3	22
113	Distinct male reproductive strategies in two closely related oak species. Molecular Ecology, 2014, 23, 4331-4343.	3.9	22
114	Within-Range Translocations and Their Consequences in European Larch. PLoS ONE, 2015, 10, e0127516.	2.5	22
115	Genetic analysis of archaeological wood remains: first results and prospects. Journal of Archaeological Science, 2006, 33, 1216-1227.	2.4	21
116	Detecting the footprints of divergent selection in oaks with linked markers. Heredity, 2012, 109, 361-371.	2.6	21
117	Chloroplast DNA variation of white oak in the Baltic countries and Poland. Forest Ecology and Management, 2002, 156, 211-222.	3.2	20
118	Early insights into the genetic consequences of range expansions. Heredity, 2011, 106, 203-204.	2.6	19
119	Sex-biased dispersal promotes adaptive parental effects. BMC Evolutionary Biology, 2010, 10, 217.	3.2	17
120	Efficient monitoring of phenology in chestnuts. Scientia Horticulturae, 2021, 281, 109958.	3.6	17
121	Contribution of two-dimensional electrophoresis of proteins to maritime pine genetics. Annales Des Sciences Forestià res, 1997, 54, 225-236.	1.2	17
122	Relevance of genetics for conservation policies: the case of Minorcan cork oaks. Annals of Botany, 2009, 104, 1069-1076.	2.9	16
123	Low genetic differentiation between two morphologically and ecologically distinct giant-leaved Mexican oaks. Plant Systematics and Evolution, 2019, 305, 89-101.	0.9	16
124	Cryptic forest refugia on the †Roof of the World'. New Phytologist, 2010, 185, 5-7.	7.3	14
125	Spatio-temporal functional regression on paleoecological data. Journal of Applied Statistics, 2011, 38, 695-704.	1.3	13
126	Chloroplast DNA variation in a hyperdiverse tropical tree community. Ecology and Evolution, 2019, 9, 4897-4905.	1.9	13

#	Article	IF	CITATIONS
127	Bootstrap variance of diversity and differentiation estimators in a subdivided population. Heredity, 1998, 80, 56-61.	2.6	12
128	Provenance hybridization in a diallel mating scheme of maritime pine (<i>Pinus pinaster</i>). II. Heterosis. Canadian Journal of Forest Research, 2000, 30, 10-16.	1.7	11
129	Genetic divergence within the monotypic tree genus Platycarya (Juglandaceae) and its implications for species' past dynamics in subtropical China. Tree Genetics and Genomes, 2017, 13, 1.	1.6	11
130	The â€New Wave' in plant demographic inference: more loci and more individuals. Molecular Ecology, 2010, 19, 1075-1078.	3.9	9
131	Asymmetric character displacement in mixed oak stands. New Phytologist, 2022, 236, 1212-1224.	7.3	9
132	A one–step organelle capture: gynogenetic kiwifruits with paternal chloroplasts. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 783-789.	2.6	8
133	Pines as Invasive Aliens: Outlook on Transgenic Pine Plantations in the Southern Hemisphere. Managing Forest Ecosystems, 2006, , 169-188.	0.9	8
134	Putting the Biological Species Concept to the Test: Using Mating Networks to Delimit Species. PLoS ONE, 2013, 8, e68267.	2.5	8
135	Multilevel Control of Organelle DNA Sequence Length in Plants. Journal of Molecular Evolution, 2008, 66, 405-415.	1.8	6
136	Microhaplotype genotyping-by-sequencing of 98 highly polymorphic markers in three chestnut tree species. Conservation Genetics Resources, 2020, 12, 567-580.	0.8	5
137	Provenance hybridization in a diallel mating scheme of maritime pine (<i>Pinus pinaster</i>). II. Heterosis. Canadian Journal of Forest Research, 2000, 30, 10-16.	1.7	5
138	Development of highly validated SNP markers for genetic analyses of chestnut species. Conservation Genetics Resources, 0 , 1 .	0.8	4
139	An intensive study plot to investigate chestnut tree reproduction. Annals of Forest Science, 2021, 78, 1.	2.0	4
140	Confirmation that chestnuts are insect-pollinated. Botany Letters, 0, , 1-5.	1.4	4
141	Inconsistent interspecific and intraspecific differentiation of climate envelopes in a subtropical tree. Journal of Plant Ecology, 2019, 12, 176-185.	2.3	3