
Andrew Hendry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4697332/publications.pdf Version: 2024-02-01

Δνηρεώ Ηενηρα

#	Article	IF	CITATIONS
1	Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 2014, 7, 1-14.	3.1	952
2	Contemporary evolution meets conservation biology. Trends in Ecology and Evolution, 2003, 18, 94-101.	8.7	858
3	Improving the forecast for biodiversity under climate change. Science, 2016, 353, .	12.6	780
4	Human influences on rates of phenotypic change in wild animal populations. Molecular Ecology, 2008, 17, 20-29.	3.9	592
5	The ecological importance of intraspecific variation. Nature Ecology and Evolution, 2018, 2, 57-64.	7.8	570
6	PERSPECTIVE: THE PACE OF MODERN LIFE: MEASURING RATES OF CONTEMPORARY MICROEVOLUTION. Evolution; International Journal of Organic Evolution, 1999, 53, 1637-1653.	2.3	539
7	Evolution on ecological time-scales. Functional Ecology, 2007, 21, 387-393.	3.6	539
8	Relaxed selection in the wild. Trends in Ecology and Evolution, 2009, 24, 487-496.	8.7	495
9	Rapid Evolution of Reproductive Isolation in the Wild: Evidence from Introduced Salmon. Science, 2000, 290, 516-518.	12.6	477
10	The multifarious effects of dispersal and gene flow on contemporary adaptation. Functional Ecology, 2007, 21, 434-443.	3.6	453
11	Eco-evolutionary dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1483-1489.	4.0	444
12	Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evolutionary Applications, 2008, 1, 252-270.	3.1	379
13	Global urban signatures of phenotypic change in animal and plant populations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8951-8956.	7.1	369
14	Perspective: The Pace of Modern Life: Measuring Rates of Contemporary Microevolution. Evolution; International Journal of Organic Evolution, 1999, 53, 1637.	2.3	352
15	Population structure attributable to reproductive time: isolation by time and adaptation by time. Molecular Ecology, 2005, 14, 901-916.	3.9	349
16	HOW MUCH OF THE VARIATION IN ADAPTIVE DIVERGENCE CAN BE EXPLAINED BY GENE FLOW? AN EVALUATION USING LAKE-STREAM STICKLEBACK PAIRS. Evolution; International Journal of Organic Evolution, 2004, 58, 2319-2331.	2.3	314
17	ADAPTIVE DIVERGENCE AND THE BALANCE BETWEEN SELECTION AND GENE FLOW: LAKE AND STREAM STICKLEBACK IN THE MISTY SYSTEM. Evolution; International Journal of Organic Evolution, 2002, 56, 1199-1216.	2.3	294
18	The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica, 2001, 112/113, 145-164.	1.1	291

#	Article	IF	CITATIONS
19	SYNTHESIS: Life history change in commercially exploited fish stocks: an analysis of trends across studies. Evolutionary Applications, 2009, 2, 260-275.	3.1	279
20	The speed of ecological speciation. Functional Ecology, 2007, 21, 455-464.	3.6	277
21	The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 2005, 15, 49-62.	3.9	266
22	Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary Dynamics. Journal of Heredity, 2016, 107, 25-41.	2.4	253
23	Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters, 2008, 11, 624-636.	6.4	252
24	Evolutionary principles and their practical application. Evolutionary Applications, 2011, 4, 159-183.	3.1	230
25	Genome divergence during evolutionary diversification as revealed in replicate lake–stream stickleback population pairs. Molecular Ecology, 2012, 21, 2852-2862.	3.9	222
26	Evolutionary Responses to Climate Change. Conservation Biology, 2007, 21, 1353-1355.	4.7	220
27	Along the speciation continuum in sticklebacks. Journal of Fish Biology, 2009, 75, 2000-2036.	1.6	220
28	POPULATION MIXING AND THE ADAPTIVE DIVERGENCE OF QUANTITATIVE TRAITS IN DISCRETE POPULATIONS: A THEORETICAL FRAMEWORK FOR EMPIRICAL TESTS. Evolution; International Journal of Organic Evolution, 2001, 55, 459.	2.3	206
29	Ecosystem tipping points in an evolving world. Nature Ecology and Evolution, 2019, 3, 355-362.	7.8	203
30	Human influences on evolution, and the ecological and societal consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160028.	4.0	202
31	Fates beyond traits: ecological consequences of humanâ€induced trait change. Evolutionary Applications, 2012, 5, 183-191.	3.1	200
32	Bite performance and morphology in a population of Darwin's finches: implications for the evolution of beak shape. Functional Ecology, 2005, 19, 43-48.	3.6	193
33	Secondary sexual characters, energy use, senescence, and the cost of reproduction in sockeye salmon. Canadian Journal of Zoology, 1999, 77, 1663-1675.	1.0	190
34	Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nature Ecology and Evolution, 2017, 1, 158.	7.8	188
35	PARALLEL AND NONPARALLEL ASPECTS OF ECOLOGICAL, PHENOTYPIC, AND GENETIC DIVERGENCE ACROSS REPLICATE POPULATION PAIRS OF LAKE AND STREAM STICKLEBACK. Evolution; International Journal of Organic Evolution, 2012, 66, 402-418.	2.3	187
36	MIGRATORY COSTS AND THE EVOLUTION OF EGG SIZE AND NUMBER IN INTRODUCED AND INDIGENOUS SALMON POPULATIONS. Evolution; International Journal of Organic Evolution, 2001, 55, 1656-1667.	2.3	184

#	Article	IF	CITATIONS
37	Ecological speciation! Or the lack thereof?This Perspective is based on the author's J.C. Stevenson Memorial Lecture delivered at the Canadian Conference for Fisheries Research in Halifax, Nova Scotia, January 2008 Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1383-1398.	1.4	182
38	Optimal Size and Number of Propagules: Allowance for Discrete Stages and Effects of Maternal Size on Reproductive Output and Offspring Fitness. American Naturalist, 2001, 157, 387-407.	2.1	181
39	VARIABLE PROGRESS TOWARD ECOLOGICAL SPECIATION IN PARAPATRY: STICKLEBACK ACROSS EIGHT LAKE-STREAM TRANSITIONS. Evolution; International Journal of Organic Evolution, 2009, 63, 1740-1753.	2.3	180
40	Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Current Opinion in Environmental Sustainability, 2010, 2, 66-74.	6.3	168
41	The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 2011, 24, 326-342.	1.7	163
42	The genomic signature of parallel adaptation from shared genetic variation. Molecular Ecology, 2014, 23, 3944-3956.	3.9	162
43	A roadmap for urban evolutionary ecology. Evolutionary Applications, 2019, 12, 384-398.	3.1	161
44	Natural selection drives patterns of lake–stream divergence in stickleback foraging morphology. Journal of Evolutionary Biology, 2008, 21, 1653-1665.	1.7	156
45	Comparing Adaptive Radiations Across Space, Time, and Taxa. Journal of Heredity, 2020, 111, 1-20.	2.4	146
46	Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolutionary Applications, 2017, 10, 121-139.	3.1	145
47	Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evolutionary Applications, 2019, 12, 1505-1512.	3.1	144
48	The Influence of Life History Trade-Offs and the Size of Incubation Gravels on Egg Size Variation in Sockeye Salmon (Oncorhynchus nerka). Oikos, 1995, 74, 425.	2.7	142
49	Two decades of genetic profiling yields first evidence of natal philopatry and longâ€ŧerm fidelity to parturition sites in sharks. Molecular Ecology, 2014, 23, 110-117.	3.9	139
50	Ecoâ€evolutionary feedbacks—Theoretical models and perspectives. Functional Ecology, 2019, 33, 13-30.	3.6	137
51	The speed of ecological speciation. Functional Ecology, 2007, 21, 455-464.	3.6	135
52	Evolution of bite force in Darwin's finches: a key role for head width. Journal of Evolutionary Biology, 2005, 18, 669-675.	1.7	134
53	Egg-size evolution in aquatic environments: does oxygen availability constrain size?. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2325-2330.	2.6	133
54	Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. Journal of Evolutionary Biology, 2006, 19, 741-754.	1.7	132

#	Article	IF	CITATIONS
55	Force–velocity tradeâ€off in Darwin's finch jaw function: a biomechanical basis for ecological speciation?. Functional Ecology, 2009, 23, 119-125.	3.6	123
56	Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1887-1894.	2.6	122
57	Communication in troubled waters: responses of fish communication systems to changing environments. Evolutionary Ecology, 2011, 25, 623-640.	1.2	120
58	Reproductive isolation of sympatric morphs in a population of Darwin's finches. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1709-1714.	2.6	114
59	Eco-evolutionary dynamics in Pacific salmon. Heredity, 2011, 106, 438-447.	2.6	110
60	How Parallel Is Parallel Evolution? A Comparative Analysis in Fishes. American Naturalist, 2017, 190, 1-16.	2.1	107
61	SOLVING THE PARADOX OF STASIS: SQUASHED STABILIZING SELECTION AND THE LIMITS OF DETECTION. Evolution; International Journal of Organic Evolution, 2014, 68, 483-500.	2.3	104
62	Adaptive variation in senescence: reproductive lifespan in a wild salmon population. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 259-266.	2.6	103
63	Questioning species realities. Conservation Genetics, 2000, 1, 67-76.	1.5	100
64	Condition Dependence and Adaptation-by-Time: Breeding Date, Life History, and Energy Allocation within a Population of Salmon. Oikos, 1999, 85, 499.	2.7	99
65	The pace of modern life II: From rates of contemporary microevolution to pattern and process. Contemporary Issues in Genetics and Evolution, 2001, , 145-164.	0.9	99
66	Disentangling the selective factors that act on male colour in wild guppies. Oikos, 2006, 113, 1-12.	2.7	98
67	QUANTIFYING THE CONSTRAINING INFLUENCE OF GENE FLOW ON ADAPTIVE DIVERGENCE IN THE LAKE-STREAM THREESPINE STICKLEBACK SYSTEM. Evolution; International Journal of Organic Evolution, 2007, 61, 2015-2026.	2.3	98
68	Disruptive selection in a bimodal population of Darwin's finches. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 753-759.	2.6	98
69	When bigger is not better: selection against large size, high condition and fast growth in juvenile lemon sharks. Journal of Evolutionary Biology, 2007, 20, 201-212.	1.7	97
70	Genomic variation at the tips of the adaptive radiation of Darwin's finches. Molecular Ecology, 2016, 25, 5282-5295.	3.9	95
71	Recent declines in salmon body size impact ecosystems and fisheries. Nature Communications, 2020, 11, 4155.	12.8	95
72	Incubation temperature, developmental biology, and the divergence of sockeye salmon (<i>Oncorhynchus nerka</i>) within Lake Washington. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1387-1394.	1.4	93

#	Article	IF	CITATIONS
73	Natural and Sexual Selection Giveth and Taketh Away Reproductive Barriers: Models of Population Divergence in Guppies. American Naturalist, 2010, 176, 26-39.	2.1	89
74	Title is missing!. Genetica, 2001, 112/113, 515-534.	1.1	88
75	The Contemporary Evolution of Fitness. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 457-476.	8.3	88
76	EVOLUTIONARY BIOLOGY IN BIODIVERSITY SCIENCE, CONSERVATION, AND POLICY: A CALL TO ACTION. Evolution; International Journal of Organic Evolution, 2010, 64, 1517-28.	2.3	87
77	Socioâ€ecoâ€evolutionary dynamics in cities. Evolutionary Applications, 2021, 14, 248-267.	3.1	86
78	When can ecological speciation be detected with neutral loci?. Molecular Ecology, 2010, 19, 2301-2314.	3.9	85
79	Causes of maladaptation. Evolutionary Applications, 2019, 12, 1229-1242.	3.1	85
80	The importance of genomic variation for biodiversity, ecosystems and people. Nature Reviews Genetics, 2021, 22, 89-105.	16.3	83
81	Five questions on ecological speciation addressed with individualâ€based simulations. Journal of Evolutionary Biology, 2009, 22, 109-123.	1.7	81
82	Constraints on speciation suggested by comparing lakeâ€stream stickleback divergence across two continents. Molecular Ecology, 2010, 19, 4963-4978.	3.9	81
83	Are indirect genetic benefits associated with polyandry? Testing predictions in a natural population of lemon sharks. Molecular Ecology, 2008, 17, 783-795.	3.9	80
84	The Complexity of Urban Eco-evolutionary Dynamics. BioScience, 2020, 70, 772-793.	4.9	79
85	Adaptive Changes in Life History and Survival following a New Guppy Introduction. American Naturalist, 2009, 174, 34-45.	2.1	77
86	Divergence with gene flow as facilitated by ecological differences: within-island variation in Darwin's finches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1041-1052.	4.0	77
87	Maternal provisioning of offspring and the use of those resources during ontogeny: variation within and between Atlantic Salmon families. Functional Ecology, 2001, 15, 13-23.	3.6	74
88	Variation in adult life history and morphology among Lake Washington sockeye salmon (<i>Oncorhynchus nerka</i>) populations in relation to habitat features and ancestral affinities. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 75-84.	1.4	73
89	Natural otolith microstructure patterns reveal precise homing to natal incubation sites by sockeye salmon (<i>Oncorhynchus nerka</i>). Canadian Journal of Zoology, 1999, 77, 766-775.	1.0	73
90	Brown bears selectively kill salmon with higher energy content but only in habitats that facilitate choice. Oikos, 2004, 104, 518-528.	2.7	73

#	Article	IF	CITATIONS
91	A geometric morphometric appraisal of beak shape in Darwin's finches. Journal of Evolutionary Biology, 2008, 21, 263-275.	1.7	73
92	Darwin's finches and their diet niches: the sympatric coexistence of imperfect generalists. Journal of Evolutionary Biology, 2014, 27, 1093-1104.	1.7	73
93	The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica, 2001, 112-113, 145-64.	1.1	72
94	Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity, 2013, 111, 456-466.	2.6	71
95	What genomic data can reveal about eco-evolutionary dynamics. Nature Ecology and Evolution, 2018, 2, 9-15.	7.8	68
96	QST > = ≠< FST?. Trends in Ecology and Evolution, 2002, 17, 502.	8.7	65
97	A genetic assessment of polyandry and breedingâ€site fidelity in lemon sharks. Molecular Ecology, 2008, 17, 3337-3351.	3.9	65
98	Does plasticity enhance or dampen phenotypic parallelism? A test with three lake–stream stickleback pairs. Journal of Evolutionary Biology, 2016, 29, 126-143.	1.7	63
99	Cryptic ecoâ€evolutionary dynamics. Annals of the New York Academy of Sciences, 2015, 1360, 120-144.	3.8	62
100	A critique for ecoâ€evolutionary dynamics. Functional Ecology, 2019, 33, 84-94.	3.6	62
101	Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives. American Naturalist, 2019, 194, 495-515.	2.1	60
102	Does time since colonization influence isolation by distance? A meta-analysis. Conservation Genetics, 2005, 6, 665-682.	1.5	59
103	Whither adaptation?. Biology and Philosophy, 2008, 23, 673-699.	1.4	59
104	Spatial and temporal isolating mechanisms: the formation of discrete breeding aggregations of sockeye salmon (<i>Oncorhynchus nerka</i>). Canadian Journal of Zoology, 1995, 73, 339-352.	1.0	55
105	Evolutionary origins for ecological patterns in space. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17482-17490.	7.1	55
106	Genetic divergence in morphology-performance mapping between Misty Lake and inlet stickleback. Journal of Evolutionary Biology, 2011, 24, 23-35.	1.7	54
107	Human influences on the strength of phenotypic selection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10070-10075.	7.1	53

108 SPATIOTEMPORAL VARIATION IN LINEAR NATURAL SELECTION ON BODY COLOR IN WILD GUPPIES (POECILIA) Tj ETQq0 0 0 ggBT /Overl

#	Article	IF	CITATIONS
109	Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: implications for reproductive isolation. Journal of Evolutionary Biology, 2011, 24, 1975-1983.	1.7	52
110	Breeding location choice in salmon: causes (habitat, competition, body size, energy stores) and consequences (life span, energy stores). Oikos, 2001, 93, 407-418.	2.7	51
111	Estimating Natural Selection Acting on Stream-Dwelling Atlantic Salmon: Implications for the Restoration of Extirpated Populations. Conservation Biology, 2003, 17, 795-805.	4.7	51
112	Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nature Communications, 2017, 8, 1294.	12.8	51
113	Contemporary evolution meets conservation biology II: impediments to integration and application. Ecological Research, 2007, 22, 947-954.	1.5	48
114	Reciprocal trophic niche shifts in native and invasive fish: salmonids and galaxiids in Patagonian lakes. Freshwater Biology, 2012, 57, 1769-1781.	2.4	47
115	Energy use in spawning Atlantic salmon. Ecology of Freshwater Fish, 2004, 13, 185-196.	1.4	46
116	Predation by Bears Drives Senescence in Natural Populations of Salmon. PLoS ONE, 2007, 2, e1286.	2.5	46
117	EXPLORING POSSIBLE HUMAN INFLUENCES ON THE EVOLUTION OF DARWIN'S FINCHES. Evolution; International Journal of Organic Evolution, 2011, 65, 2258-2272.	2.3	46
118	Rapid Senescence in Pacific Salmon. American Naturalist, 2005, 166, 556-568.	2.1	43
119	Environmental factors influencing adult sex ratio in Trinidadian guppies. Oecologia, 2009, 159, 735-745.	2.0	42
120	Genetic evidence for the persistence and divergence of native and introduced sockeye salmon (<i>Oncorhynchus nerka</i>) within Lake Washington, Washington. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53, 823-832.	1.4	41
121	Testing for mating isolation between ecotypes: laboratory experiments with lake, stream and hybrid stickleback. Journal of Evolutionary Biology, 2010, 23, 2694-2708.	1.7	41
122	Experimental elimination of parasites in nature leads to the evolution of increased resistance in hosts. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132371.	2.6	40
123	Do stressful conditions make adaptation difficult? Guppies in the oilâ€polluted environments of southern Trinidad. Evolutionary Applications, 2015, 8, 854-870.	3.1	39
124	Urbanization erodes niche segregation in Darwin's finches. Evolutionary Applications, 2019, 12, 1329-1343.	3.1	39
125	Factors influencing progress toward sympatric speciation. Journal of Evolutionary Biology, 2011, 24, 2186-2196.	1.7	38
126	Adding parasites to the guppy-predation story: insights from field surveys. Oecologia, 2013, 172, 155-166.	2.0	37

#	Article	IF	CITATIONS
127	Manyâ€ŧoâ€one formâ€ŧoâ€function mapping weakens parallel morphological evolution. Evolution; International Journal of Organic Evolution, 2017, 71, 2738-2749.	2.3	37
128	Eco-evolutionary dynamics: intertwining ecological and evolutionary processes in contemporary time. F1000 Biology Reports, 2010, 2, .	4.0	36
129	Genetic and Phenotypic Variation through the Migratory Season Provides Evidence for Multiple Populations of Wild Steelhead in the Dean River, British Columbia. Transactions of the American Fisheries Society, 2002, 131, 418-434.	1.4	35
130	Darwin in the fossils. Nature, 2008, 451, 779-780.	27.8	35
131	How maladaptation can structure biodiversity: eco-evolutionary island biogeography. Trends in Ecology and Evolution, 2015, 30, 154-160.	8.7	34
132	Linking macrotrends and microrates: Re-evaluating microevolutionary support for Cope's rule. Evolution; International Journal of Organic Evolution, 2015, 69, 1345-1354.	2.3	34
133	Developmental temperature affects phenotypic means and variability: A metaâ€analysis of fish data. Fish and Fisheries, 2019, 20, 1005-1022.	5.3	33
134	How Humans Differ from Other Animals in Their Levels of Morphological Variation. PLoS ONE, 2009, 4, e6876.	2.5	32
135	Proximate Composition, Reproductive Development, and a Test for Trade-Offs in Captive Sockeye Salmon. Transactions of the American Fisheries Society, 2000, 129, 1082-1095.	1.4	31
136	Growth rate differences between resident native brook trout and non-native brown trout. Journal of Fish Biology, 2007, 71, 1430-1447.	1.6	31
137	EVOLUTIONARY POTENTIAL OF A LARGE MARINE VERTEBRATE: QUANTITATIVE GENETIC PARAMETERS IN A WILD POPULATION. Evolution; International Journal of Organic Evolution, 2009, 63, 1051-1067.	2.3	31
138	Anthropogenic disturbance and evolutionary parameters: a lemon shark population experiencing habitat loss. Evolutionary Applications, 2011, 4, 1-17.	3.1	31
139	Ecoâ€evolutionary effects on population recovery following catastrophic disturbance. Evolutionary Applications, 2011, 4, 354-366.	3.1	31
140	Evolutionary rescue under environmental change?. , 2012, , 216-233.		31
141	Factors Influencing Progress toward Ecological Speciation. International Journal of Ecology, 2012, 2012, 1-7.	0.8	31
142	Can gene flow have negative demographic consequences? Mixed evidence from stream threespine stickleback. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1533-1542.	4.0	30
143	This isnotdéjà vu all over again: male guppy colour in a new experimental introduction. Journal of Evolutionary Biology, 2007, 20, 1339-1350.	1.7	28
144	Population divergence of private and non-private signals in wild guppies. Environmental Biology of Fishes, 2012, 94, 513-525.	1.0	28

#	Article	IF	CITATIONS
145	An introduction to microevolution: Rate, pattern, process. Contemporary Issues in Genetics and Evolution, 2001, , 1-8.	0.9	27
146	Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia, 2012, 170, 77-88.	2.0	26
147	Keystone Genes. Trends in Ecology and Evolution, 2018, 33, 689-700.	8.7	26
148	The pace of modern life, revisited. Molecular Ecology, 2022, 31, 1028-1043.	3.9	26
149	Melanin-based coloration and host–parasite interactions under global change. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180285.	2.6	25
150	ADAPTIVE DIVERGENCE AND THE BALANCE BETWEEN SELECTION AND GENE FLOW: LAKE AND STREAM STICKLEBACK IN THE MISTY SYSTEM. Evolution; International Journal of Organic Evolution, 2002, 56, 1199.	2.3	24
151	Speciation. Nature, 2009, 458, 162-164.	27.8	24
152	Parallel and nonparallel behavioural evolution in response to parasitism and predation in Trinidadian guppies. Journal of Evolutionary Biology, 2016, 29, 1406-1422.	1.7	24
153	POPULATION MIXING AND THE ADAPTIVE DIVERGENCE OF QUANTITATIVE TRAITS IN DISCRETE POPULATIONS: A THEORETICAL FRAMEWORK FOR EMPIRICAL TESTS. Evolution; International Journal of Organic Evolution, 2001, 55, 459-466.	2.3	23
154	Testing the influence of local forest canopy clearing on phenotypic variation in Trinidadian guppies. Functional Ecology, 2010, 24, 354-364.	3.6	23
155	Testing for local host–parasite adaptation: an experiment with Gyrodactylus ectoparasites and guppy hosts. International Journal for Parasitology, 2015, 45, 409-417.	3.1	23
156	The power of natural selection. Nature, 2005, 433, 694-695.	27.8	22
157	Heritable gene expression differences between lake and stream stickleback include both parallel and antiparallel components. Heredity, 2017, 119, 339-348.	2.6	22
158	An introduction to microevolution: rate, pattern, process. Genetica, 2001, 112-113, 1-8.	1.1	22
159	Characterization of tetranucleotide microsatellite markers in guppy (Poecilia reticulata). Molecular Ecology Notes, 2005, 5, 269-271.	1.7	21
160	EVOLUTIONARY INFERENCES FROM THE ANALYSIS OF EXCHANGEABILITY. Evolution; International Journal of Organic Evolution, 2013, 67, 3429-3441.	2.3	21
161	Adaptation in temporally variable environments: stickleback armor in periodically breaching barâ€built estuaries. Journal of Evolutionary Biology, 2018, 31, 735-752.	1.7	21
162	Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highlyâ€variable estuaries. Molecular Ecology, 2021, 30, 2054-2064.	3.9	20

#	Article	IF	CITATIONS
163	HOW MUCH OF THE VARIATION IN ADAPTIVE DIVERGENCE CAN BE EXPLAINED BY GENE FLOW? AN EVALUATION USING LAKE-STREAM STICKLEBACK PAIRS. Evolution; International Journal of Organic Evolution, 2004, 58, 2319.	2.3	19
164	Asymmetric reproductive barriers and mosaic reproductive isolation: insights from <scp>M</scp> isty lake–stream stickleback. Ecology and Evolution, 2014, 4, 1166-1175.	1.9	18
165	Using adaptive traits to consider potential consequences of temporal variation in selection: male guppy colour through time and space. Biological Journal of the Linnean Society, 2014, 112, 108-122.	1.6	18
166	Parting ways: parasite release in nature leads to sexâ€specific evolution of defence. Journal of Evolutionary Biology, 2016, 29, 23-34.	1.7	18
167	Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical demonstration using introduced sockeye salmon. Genetica, 2001, 112-113, 515-34.	1.1	18
168	Genetic and plastic components of divergent male intersexual behavior in Misty lake/stream stickleback. Behavioral Ecology, 2008, 19, 1217-1224.	2.2	17
169	Both Geography and Ecology Contribute to Mating Isolation in Guppies. PLoS ONE, 2010, 5, e15659.	2.5	17
170	Repeatability of Adaptive Radiation Depends on Spatial Scale: Regional Versus Global Replicates of Stickleback in Lake Versus Stream Habitats. Journal of Heredity, 2020, 111, 43-56.	2.4	17
171	Evidence for contemporary and historical gene flow between guppy populations in different watersheds, with a test for associations with adaptive traits. Ecology and Evolution, 2019, 9, 4504-4517.	1.9	17
172	Adaptive divergence and the evolution of reproductive isolation in the wild: An empirical demonstration using introduced sockeye salmon. Contemporary Issues in Genetics and Evolution, 2001, , 515-534.	0.9	17
173	Divergent Selection and Then What Not: The Conundrum of Missing Reproductive Isolation in Misty Lake and Stream Stickleback. International Journal of Ecology, 2012, 2012, 1-14.	0.8	16
174	Assessing reproductive isolation using a contact zone between parapatric lakeâ€stream stickleback ecotypes. Journal of Evolutionary Biology, 2016, 29, 2491-2501.	1.7	16
175	Natural otolith microstructure patterns reveal precise homing to natal incubation sites by sockeye salmon (<i>Oncorhynchus nerka</i>). Canadian Journal of Zoology, 1999, 77, 766-775.	1.0	16
176	Host preference of an introduced â€~generalist' parasite for a non-native host. International Journal for Parasitology, 2015, 45, 703-709.	3.1	15
177	The ecology and evolution of seed predation by Darwin's finches on <i>Tribulus cistoides</i> on the Galápagos Islands. Ecological Monographs, 2020, 90, e01392.	5.4	15
178	Speciation without Pre-Defined Fitness Functions. PLoS ONE, 2015, 10, e0137838.	2.5	15
179	Rheotactic response of fry from beach-spawning populations of sockeye salmon: evolution after selection is relaxed. Canadian Journal of Zoology, 1998, 76, 2186-2193.	1.0	13
180	MIGRATORY COSTS AND THE EVOLUTION OF EGG SIZE AND NUMBER IN INTRODUCED AND INDIGENOUS SALMON POPULATIONS. Evolution; International Journal of Organic Evolution, 2001, 55, 1656.	2.3	13

#	Article	IF	CITATIONS
181	Magic traits: distinguishing the important from the trivial. Trends in Ecology and Evolution, 2012, 27, 4-5.	8.7	13
182	Predator-induced Contemporary Evolution, Phenotypic Plasticity, and the Evolution of Reaction Norms in Guppies. Copeia, 2017, 105, 514-522.	1.3	13
183	Does sexual selection evolve following introduction to new environments?. Animal Behaviour, 2011, 82, 1085-1095.	1.9	11
184	When maladaptive gene flow does not increase selection. Evolution; International Journal of Organic Evolution, 2015, 69, 2289-2302.	2.3	11
185	100â€year time series reveal little morphological change following impoundment and predator invasion in two Neotropical characids. Evolutionary Applications, 2019, 12, 1385-1401.	3.1	11
186	Matching habitat choice: it's not for everyone. Oikos, 2020, 129, 689-699.	2.7	11
187	Different refuge types dampen exotic invasion and enhance diversity at the whole ecosystem scale in a heterogeneous river system. Biological Invasions, 2021, 23, 443-460.	2.4	11
188	A Tale of Two Morphs: Modeling Pollen Transfer, Magic Traits, and Reproductive Isolation in Parapatry. PLoS ONE, 2014, 9, e106512.	2.5	11
189	When Should Harvest Evolution Matter to Population Dynamics?. Trends in Ecology and Evolution, 2016, 31, 500-502.	8.7	10
190	Testing for parallel allochronic isolation in lake–stream stickleback. Journal of Evolutionary Biology, 2016, 29, 47-57.	1.7	10
191	Sexual dimorphism modifies habitatâ€associated divergence: Evidence from beach and creek breeding sockeye salmon. Journal of Evolutionary Biology, 2019, 32, 227-242.	1.7	10
192	Horizon scan of conservation issues for inland waters in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 869-881.	1.4	10
193	Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback. Oikos, 2020, 129, 1795-1806.	2.7	10
194	Biodiversity only makes sense in the light of evolution. Journal of Biosciences, 2014, 39, 333-337.	1.1	9
195	The Biomechanics of Ecological Speciation. , 2006, , 301-321.		9
196	The Elvis paradox. Nature, 2007, 446, 147-149.	27.8	8
197	The context dependence of assortative mating: a demonstration with conspecific salmonid populations. Journal of Evolutionary Biology, 2016, 29, 1827-1835.	1.7	8
198	Environmental factors influencing adult sex ratio in Poecilia reticulata: laboratory experiments. Journal of Fish Biology, 2011, 79, 937-953.	1.6	7

#	Article	IF	CITATIONS
199	Testing the prey naiveté hypothesis: Can native prey (Astyanax ruberrimus) recognize an introduced top predator, Cichla monoculus?. Biological Invasions, 2021, 23, 205-219.	2.4	7
200	Resistance and resilience of genetic and phenotypic diversity to "black swan―flood events: A retrospective analysis with historical samples of guppies. Molecular Ecology, 2021, 30, 1017-1028.	3.9	7
201	Possible influences of plasticity and genetic/maternal effects on species coexistence: native <i><scp>G</scp>ammarus fasciatus</i> facing exotic amphipods. Functional Ecology, 2013, 27, 1212-1223.	3.6	6
202	An experimental test of antagonistic effects of competition and parasitism on host performance in semiâ€natural mesocosms. Oikos, 2016, 125, 790-796.	2.7	6
203	Experimental Assessment in Nature of the Ecological Effects of a Specialist Parasite. Copeia, 2017, 105, 494-503.	1.3	6
204	Evolutionary Rates Standardized for Evolutionary Space: Perspectives on Trait Evolution. Trends in Ecology and Evolution, 2018, 33, 379-389.	8.7	6
205	Temporally varying disruptive selection in the medium ground finch (Geospiza fortis). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192290.	2.6	6
206	Genetic insights into the past, present, and future of a keystone species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 344-346.	7.1	6
207	Asymmetric Isolation and the Evolution of Behaviors Influencing Dispersal: Rheotaxis of Guppies above Waterfalls. Genes, 2020, 11, 180.	2.4	6
208	Clinal genomic analysis reveals strong reproductive isolation across a steep habitat transition in stickleback fish. Nature Communications, 2021, 12, 4850.	12.8	6
209	Taking time with microevolution. Trends in Ecology and Evolution, 1998, 13, 76-77.	8.7	5
210	Eco-Evolutionary Dynamics in Cold Blood. Copeia, 2017, 105, 441-450.	1.3	5
211	Phenotypic stability in scalar calcium of freshwater fish across a wide range of aqueous calcium availability in nature. Ecology and Evolution, 2021, 11, 6053-6065.	1.9	5
212	Evolutionary Restoration Ecology. , 2016, , 427-454.		5
213	Eco-Evolutionary Dynamics: Community Consequences of (Mal)Adaptation. Current Biology, 2013, 23, R869-R871.	3.9	4
214	Independent lineages in a common environment: the roles of determinism and contingency in shaping the migration timing of even†versus oddâ€year pink salmon over broad spatial and temporal scales. Ecology Letters, 2019, 22, 1547-1556.	6.4	4
215	Do replicates of independent guppy lineages evolve similarly in a predatorâ€free laboratory environment?. Ecology and Evolution, 2019, 9, 36-51.	1.9	4
216	Female preference for novel males constrains the contemporary evolution of assortative mating in guppies. Behavioral Ecology, 2019, 30, 646-657.	2.2	4

#	Article	IF	CITATIONS
217	Future Benefits from Contemporary Evosystem Services: A Response to Rudman et al Trends in Ecology and Evolution, 2017, 32, 717-719.	8.7	3
218	How might Gyrodactylus parasitism modify trade-offs between female preference and susceptibility of males to predation in Trinidadian guppies?. International Journal for Parasitology, 2022, 52, 459-467.	3.1	3
219	The complex ecology of genitalia: Gonopodium length and allometry in the Trinidadian guppy. Ecology and Evolution, 2021, 11, 4564-4576.	1.9	2
220	Using Reciprocal Transplants to Assess Local Adaptation, Genetic Rescue, and Sexual Selection in Newly Established Populations. Genes, 2021, 12, 5.	2.4	2
221	Experimental evolution of parasite resistance in wild guppies: natural and multifarious selection. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141820.	2.6	1
222	Adding the third dimension to studies of parallel evolution of morphology and function: An exploration based on parapatric lakeâ€stream stickleback. Ecology and Evolution, 2020, 10, 13297-13311.	1.9	1
223	Benthic–limnetic morphological variation in fishes: Dissolved organic carbon concentration produces unexpected patterns. Ecosphere, 2022, 13, .	2.2	1
224	Where did the finch go? Insights from radio telemetry of the medium ground finch (<i>Geospiza) Tj ETQq0 0 0 r</i>	gBT_/Overl	ock 10 Tf 50

225	Effects of insularity on genetic diversity within and among natural populations. Ecology and Evolution, 2022, 12, e8887.	1.9	1
226	A Tale of Two Islands: The Established Researcher. Bulletin of the Ecological Society of America, 2018, 99, e01457.	0.2	0
227	The Biomechanics of Ecological Speciation. , 2006, , 301-321.		0