
Jan W Hopmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4697116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil and human security in the 21st century. Science, 2015, 348, 1261071.	12.6	852
2	Soil Moisture Measurement for Ecological and Hydrological Watershedâ€5cale Observatories: A Review. Vadose Zone Journal, 2008, 7, 358-389.	2.2	811
3	Modeling compensated root water and nutrient uptake. Ecological Modelling, 2009, 220, 505-521.	2.5	344
4	Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment, 2009, 134, 251-256.	5.3	318
5	One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resources Research, 2001, 37, 2457-2470.	4.2	282
6	Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology, 2008, 352, 367-378.	5.4	269
7	Calibration of a Twoâ€Dimensional Root Water Uptake Model. Soil Science Society of America Journal, 2001, 65, 1027-1037.	2.2	237
8	Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15352-15356.	7.1	231
9	Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agricultural Water Management, 2005, 74, 219-242.	5.6	225
10	Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant and Soil, 1994, 164, 299-314.	3.7	218
11	Evaluation of urea–ammonium–nitrate fertigation with drip irrigation using numerical modeling. Agricultural Water Management, 2006, 86, 102-113.	5.6	214
12	Soil Moisture Response to Snowmelt and Rainfall in a Sierra Nevada Mixed onifer Forest. Vadose Zone Journal, 2011, 10, 786-799.	2.2	203
13	Evaluation of soil salinity leaching requirement guidelines. Agricultural Water Management, 2011, 98, 502-506.	5.6	184
14	Title is missing!. Plant and Soil, 1998, 202, 281-293.	3.7	177
15	Geophysical constraints on deep weathering and water storage potential in the Southern Sierra Critical Zone Observatory. Earth Surface Processes and Landforms, 2014, 39, 366-380.	2.5	177
16	Climate-smart agriculture global research agenda: scientific basis for action. Agriculture and Food Security, 2014, 3, .	4.2	165
17	Current Capabilities and Future Needs of Root Water and Nutrient Uptake Modeling. Advances in Agronomy, 2002, 77, 103-183.	5.2	161
18	Optimization of Hydraulic Functions from Transient Outflow and Soil Water Pressure Data. Soil Science Society of America Journal, 1993, 57, 1167-1175.	2.2	157

#	Article	IF	CITATIONS
19	Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: Geometry and dispersion effects. Water Resources Research, 2002, 38, 7-1-7-14.	4.2	156
20	Parameter estimation of two-fluid capillary pressure–saturation and permeability functions. Advances in Water Resources, 1999, 22, 479-493.	3.8	153
21	Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 2021, , 1-191.	5.2	151
22	Unsaturated Hydraulic Conductivity from Transient Multistep Outflow and Soil Water Pressure Data. Soil Science Society of America Journal, 1994, 58, 687-695.	2.2	144
23	Reevaluation of the Evaporation Method for Determining Hydraulic Functions in Unsaturated Soils. Soil Science Society of America Journal, 1993, 57, 1436-1443.	2.2	142
24	Three-dimensional visualization and quantification of water content in the rhizosphere. New Phytologist, 2011, 192, 653-663.	7.3	140
25	Reclaiming freshwater sustainability in the Cadillac Desert. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21263-21269.	7.1	136
26	Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma, 2003, 114, 231-259.	5.1	125
27	Quantitative Analysis of Flow Processes in a Sand Using Synchrotron-Based X-ray Microtomography. Vadose Zone Journal, 2005, 4, 112-126.	2.2	117
28	Simultaneous Measurement of Soil Penetration Resistance and Water Content with a Combined Penetrometer-TDR Moisture Probe. Soil Science Society of America Journal, 2001, 65, 4-12.	2.2	115
29	Leaching with Subsurface Drip Irrigation under Saline, Shallow Groundwater Conditions. Vadose Zone Journal, 2008, 7, 810-818.	2.2	107
30	Time Domain Reflectometry Calibration for Uniformly and Nonuniformly Wetted Sandy and Clayey Loam Soils. Soil Science Society of America Journal, 1992, 56, 1341-1345.	2.2	106
31	Comparison of Air and Water Permeability between Disturbed and Undisturbed Soils. Soil Science Society of America Journal, 2005, 69, 1361-1371.	2.2	103
32	Porous Media With Linearly Variable Hydraulic Properties. Water Resources Research, 1991, 27, 2735-2741.	4.2	101
33	Mechanisms controlling the impact of multi-year drought on mountain hydrology. Scientific Reports, 2018, 8, 690.	3.3	97
34	Neural Networks Prediction of Soil Hydraulic Functions for Alluvial Soils Using Multistep Outflow Data. Soil Science Society of America Journal, 2004, 68, 417-429.	2.2	94
35	Software to model soil water retention curves (SWRC, version 2.00). Scientia Agricola, 2000, 57, 191-192.	1.2	93
36	Contribution of water content and bulk density to field soil penetration resistance as measured by a combined cone penetrometer–TDR probe. Soil and Tillage Research, 2001, 60, 35-42.	5.6	91

#	Article	IF	CITATIONS
37	Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agriculture, Ecosystems and Environment, 2009, 129, 378-390.	5.3	87
38	Stochastic analysis of soil water regime in a watershed. Journal of Hydrology, 1989, 105, 57-84.	5.4	83
39	Twoâ€dimensional steady state unsaturated water flow in heterogeneous soils with autocorrelated soil hydraulic properties. Water Resources Research, 1988, 24, 2005-2017.	4.2	82
40	Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments. Advances in Water Resources, 2000, 23, 677-688.	3.8	82
41	Pore-scale measurements of solute breakthrough using microfocus X-ray computed tomography. Water Resources Research, 2000, 36, 2067-2079.	4.2	82
42	Scaling Water Retention Curves for Soils with Lognormal Poreâ€Size Distribution. Soil Science Society of America Journal, 1998, 62, 1496-1505.	2.2	81
43	From Field- to Landscape-Scale Vadose Zone Processes: Scale Issues, Modeling, and Monitoring. Vadose Zone Journal, 2006, 5, 129-139.	2.2	79
44	Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization. Water Resources Research, 2004, 40, .	4.2	77
45	THERMAL CONDUCTIVITY OF TWO POROUS MEDIA AS A FUNCTION OF WATER CONTENT, TEMPERATURE, AND DENSITY. Soil Science, 1986, 142, 187-195.	0.9	76
46	Soil suitability index identifies potential areas for groundwater banking on agricultural lands. California Agriculture, 2015, 69, 75-84.	0.8	73
47	Determination of phase-volume fractions from tomographic measurements in two-phase systems. Advances in Water Resources, 1999, 22, 577-584.	3.8	72
48	Evaluation of subsurface drip irrigation design and management parameters for alfalfa. Agricultural Water Management, 2012, 109, 81-93.	5.6	72
49	Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree. Agricultural Water Management, 1997, 35, 123-146.	5.6	71
50	Xâ€ r ay Tomography of Soil Water Distribution in Oneâ€ S tep Outflow Experiments. Soil Science Society of America Journal, 1992, 56, 355-362.	2.2	68
51	Multi-criteria optimization of a regional spatially-distributed subsurface water flow model. Journal of Hydrology, 2005, 311, 20-48.	5.4	68
52	Thermal Neutron Computed Tomography of Soil Water and Plant Roots. Soil Science Society of America Journal, 2008, 72, 1234-1242.	2.2	66
53	Application of a simple soil-water hysteresis model. Journal of Hydrology, 1988, 98, 21-29.	5.4	62
54	Temperature Dependence of Soil Water Retention Curves. Soil Science Society of America Journal, 1986, 50, 562-567.	2.2	61

#	Article	IF	CITATIONS
55	Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil and Tillage Research, 1998, 47, 27-36.	5.6	61
56	Scaling soil water retention functions using particle-size distribution. Journal of Hydrology, 2009, 374, 223-234.	5.4	60
57	Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Global Change Biology, 2019, 25, 1895-1904.	9.5	60
58	Simultaneous scaling of soil water retention and unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution. Advances in Water Resources, 2001, 24, 677-688.	3.8	58
59	Multi-functional probe for small-scale simultaneous measurements of soil thermal properties, water content, and electrical conductivity. Sensors and Actuators A: Physical, 2006, 132, 70-77.	4.1	57
60	In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique. Water Resources Research, 1998, 34, 1035-1050.	4.2	55
61	Multi-functional heat pulse probe measurements of coupled vadose zone flow and transport. Advances in Water Resources, 2006, 29, 250-267.	3.8	55
62	Parameter Uncertainty Analysis of Common Infiltration Models. Soil Science Society of America Journal, 1998, 62, 1477-1487.	2.2	54
63	Semianalytical Solution for Dualâ€Probe Heatâ€Pulse Applications that Accounts for Probe Radius and Heat Capacity. Vadose Zone Journal, 2012, 11, vzj2011.0112.	2.2	53
64	Using Bimodal Lognormal Functions to Describe Soil Hydraulic Properties. Soil Science Society of America Journal, 2011, 75, 468-480.	2.2	52
65	A comparison of various methods to scale soil hydraulic properties. Journal of Hydrology, 1987, 93, 241-256.	5.4	51
66	PLOTSIZE AND SAMPLE NUMBER FOR NEUTRON PROBE MEASUREMENTS IN SMALL FIELD TRIALS. Soil Science, 1993, 156, 213-224.	0.9	50
67	Simultaneous scaling of soil water retention and hydraulic conductivity curves. Water Resources Research, 1992, 28, 19-31.	4.2	49
68	Spatial and Seasonal Variation of Furrow Infiltration. Journal of Irrigation and Drainage Engineering - ASCE, 1993, 119, 74-90.	1.0	49
69	Grapevine root distribution in drip and microsprinkler irrigation. Scientia Agricola, 2003, 60, 377-387.	1.2	47
70	Interdisciplinary Sciences in a Global Network of Critical Zone Observatories. Vadose Zone Journal, 2011, 10, 781-785.	2.2	46
71	Estimation of Vadose Zone Water Flux from Multi-Functional Heat Pulse Probe Measurements. Soil Science Society of America Journal, 2005, 69, 599-606.	2.2	45
72	Spatial Variability of Hydraulic Properties and Sediment Characteristics in a Deep Alluvial Unsaturated Zone. Vadose Zone Journal, 2009, 8, 276-289.	2.2	45

#	Article	IF	CITATIONS
73	Drip irrigation provides the salinity control needed for profitable irrigation of tomatoes in the San Joaquin Valley. California Agriculture, 2009, 63, 131-136.	0.8	41
74	Kirkham's Legacy and Contemporary Challenges in Soil Physics Research. Soil Science Society of America Journal, 2011, 75, 1589-1601.	2.2	40
75	How useful are small-scale soil hydraulic property measurements for large-scale vadose zone modeling?. Geophysical Monograph Series, 2002, , 247-258.	0.1	39
76	Evaluation of model complexity and space–time resolution on the prediction of long-term soil salinity dynamics, western San Joaquin Valley, California. Hydrological Processes, 2006, 20, 2647-2668.	2.6	39
77	Southern Sierra Critical Zone Observatory and Kings River Experimental Watersheds: A Synthesis of Measurements, New Insights, and Future Directions. Vadose Zone Journal, 2018, 17, 180081.	2.2	39
78	Deep vadose zone hydrology demonstrates fate of nitrate in eastern San Joaquin Valley. California Agriculture, 2005, 59, 124-132.	0.8	38
79	Application efficiency of micro-sprinkler irrigation of almond trees. Agricultural Water Management, 1997, 34, 247-263.	5.6	37
80	Toward Improved Identifiability of Soil Hydraulic Parameters: On the Selection of a Suitable Parametric Model. Vadose Zone Journal, 2003, 2, 98-113.	2.2	36
81	Soil water flux density measurements near 1 cm d ^{â^'1} using an improved heat pulse probe design. Water Resources Research, 2008, 44, .	4.2	35
82	Direct estimation of air–oil and oil–water capillary pressure and permeability relations from multi-step outflow experiments. Journal of Contaminant Hydrology, 1998, 32, 223-245.	3.3	34
83	Catchment‧cale Soil Water Dynamics in a Mediterraneanâ€Type Oak Woodland. Vadose Zone Journal, 2011, 10, 800-815.	2.2	34
84	Effects of drip fertigation frequency and N-source on soil N2O production in almonds. Agriculture, Ecosystems and Environment, 2017, 238, 67-77.	5.3	34
85	Estimation of in situ unsaturated soil hydraulic functions from scaled cumulative drainage data. Water Resources Research, 1994, 30, 2387-2394.	4.2	33
86	Evapotranspiration Estimate over an Almond Orchard Using Landsat Satellite Observations. Remote Sensing, 2017, 9, 436.	4.0	33
87	Assessment of orchard N losses to groundwater with a vadose zone monitoring network. Agricultural Water Management, 2016, 172, 83-95.	5.6	32
88	A Dualâ€Probe Heatâ€Pulse Sensor with Rigid Probes for Improved Soil Water Content Measurement. Soil Science Society of America Journal, 2015, 79, 1059-1072.	2.2	31
89	Effect of Temperatureâ€dependent Hydraulic Properties on Soil Water Movement. Soil Science Society of America Journal, 1985, 49, 51-58.	2.2	29
90	Spatial and temporal distribution of root water uptake of an almond tree under microsprinkler irrigation. Irrigation Science, 2006, 24, 267-278.	2.8	29

#	Article	IF	CITATIONS
91	Ground Penetrating Radar: Water Table Detection Sensitivity to Soil Water Retention Properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4, 748-753.	4.9	29
92	The century experiment: the first twenty years of <scp>UC</scp> Davis' Mediterranean agroecological experiment. Ecology, 2018, 99, 503-503.	3.2	28
93	Prediction of spatially variable unsaturated hydraulic conductivity using scaled particleâ€size distribution functions. Water Resources Research, 2013, 49, 4219-4229.	4.2	27
94	Soil Water Retention Measurements Using a Combined Tensiometerâ€Coiled Time Domain Reflectometry Probe. Soil Science Society of America Journal, 2002, 66, 1752-1759.	2.2	25
95	Fate of nitrogen for subsurface drip dispersal of effluent from small wastewater systems. Journal of Contaminant Hydrology, 2011, 126, 19-28.	3.3	25
96	Twoâ€Dimensional Analysis of Furrow Infiltration. Journal of Irrigation and Drainage Engineering - ASCE, 1992, 118, 791-806.	1.0	24
97	Effect of degree of fluid saturation on transport coefficients in disturbed soils. European Journal of Soil Science, 2004, 55, 147-164.	3.9	24
98	Effect of Probe Deflection on Dualâ€Probe Heatâ€Pulse Thermal Conductivity Measurements. Soil Science Society of America Journal, 2010, 74, 1537-1540.	2.2	24
99	Annual carbon and nitrogen loadings for a furrow-irrigated field. Agricultural Water Management, 2009, 96, 925-930.	5.6	23
100	Evaluation of MPS-1 soil water potential sensor. Journal of Hydrology, 2011, 402, 126-134.	5.4	23
101	Calibration of a Dualâ€Energy Gamma Radiation System for Multiple Point Measurements in a Soil. Water Resources Research, 1986, 22, 1109-1114.	4.2	20
102	SAMPLING DESIGN FOR SOIL MOISTURE MEASUREMENTS IN LARGE FIELD TRIALS1. Soil Science, 1995, 159, 155-161.	0.9	20
103	Evaluation of CO2 fluxes from an agricultural field using a process-based numerical model. Journal of Hydrology, 2008, 361, 131-143.	5.4	20
104	Impact of root growth and hydraulic conductance on canopy carbon-water relations of young walnut trees (Juglans regia L.) under drought. Scientia Horticulturae, 2017, 226, 342-352.	3.6	20
105	Presentation and application of an analytical model to describe soil hydraulic properties. Journal of Hydrology, 1986, 87, 135-143.	5.4	19
106	Combined effect of hysteresis and temperature on soil-water movement. Journal of Hydrology, 1986, 83, 161-171.	5.4	19
107	A Plea to Reform Soil Science Education. Soil Science Society of America Journal, 2007, 71, 639-640.	2.2	19
108	Uncertainties in leaching assessment in micro-irrigated fields using water balance approach. Agricultural Water Management, 2019, 213, 107-115.	5.6	19

#	Article	IF	CITATIONS
109	Evaluation of Model Complexity and Input Uncertainty of Fieldâ€Scale Water Flow and Salt Transport. Vadose Zone Journal, 2006, 5, 951-962.	2.2	18
110	Numerical evaluation of alternative heat pulse probe designs and analyses. Water Resources Research, 2007, 43, .	4.2	18
111	Considerations of a field-scale soil carbon budget for furrow irrigation. Agriculture, Ecosystems and Environment, 2006, 113, 391-398.	5.3	17
112	Modeling shallow water table evaporation in irrigated regions. Irrigation and Drainage Systems, 2007, 21, 119-132.	0.5	17
113	Simplified Multistep Outflow Method to Estimate Unsaturated Hydraulic Functions for Coarseâ€Textured Soils. Soil Science Society of America Journal, 2011, 75, 418-425.	2.2	17
114	An Emerging Technology for Scaling Field Soil-Water Behavior. , 1998, , 136-166.		16
115	HORIZONTAL INFILTRATION REVISITED USING PARAMETER ESTIMATION. Soil Science, 2000, 165, 708-717.	0.9	16
116	Toward Improved Identifiability of Soil Hydraulic Parameters: On the Selection of a Suitable Parametric Model. Vadose Zone Journal, 2003, 2, 98-113.	2.2	16
117	Multi-Functional Heat Pulse Probe for the Simultaneous Measurement of Soil Water Content, Solute Concentration, and Heat Transport Parameters. Vadose Zone Journal, 2003, 2, 561-571.	2.2	16
118	Soil moisture calibration of TDR multilevel probes. Scientia Agricola, 2000, 57, 349-354.	1.2	15
119	Diffusion Aspects of Designing Porous Growth Media for Earth and Space. Soil Science Society of America Journal, 2012, 76, 1564-1578.	2.2	15
120	Variation in evapotranspiration and capillary rise with changing soil profile characteristics. Agricultural Water Management, 1988, 13, 297-305.	5.6	14
121	Area representative soil water content estimations from limited measurements at time-stable locations or depths. Journal of Hydrology, 2015, 530, 580-590.	5.4	14
122	Evaluating the relative air permeability of porous media from their water retention curves. Water Resources Research, 2016, 52, 3428-3439.	4.2	14
123	Calibration of a root water uptake model in spatially variable soils. Journal of Hydrology, 1988, 103, 53-65.	5.4	13
124	Design and Numerical Analysis of a Button Heat Pulse Probe for Soil Water Content Measurement. Vadose Zone Journal, 2009, 8, 167-173.	2.2	13
125	Geophysical Methods for Field-Scale Imaging of Root Zone Properties and Processes. SSSA Special Publication Series, 0, , 247-282.	0.2	13
126	In Situ Monitoring of Soil Solution Nitrate: Proof of Concept. Soil Science Society of America Journal, 2009, 73, 501-509.	2.2	12

#	Article	IF	CITATIONS
127	Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor. Sensors, 2020, 20, 7041.	3.8	12
128	SOIL MOISTURE CALIBRATION OF A TDR MULTILEVEL PROBE IN GRAVELY SOILS. Soil Science, 1997, 162, 554-565.	0.9	12
129	Microsprinklers wet larger soil volume; boost almond yield, tree growth. California Agriculture, 1999, 53, 39-43.	0.8	12
130	Downscaling transpiration rate from field to tree scale. Agricultural and Forest Meteorology, 2016, 221, 71-77.	4.8	11
131	Prediction of Unsaturated Relative Hydraulic Conductivity from Kosugi's Water Retention Function. Procedia Environmental Sciences, 2013, 19, 609-617.	1.4	9
132	Toward Improved Identifiability of Soil Hydraulic Parameters. Vadose Zone Journal, 2003, 2, 98.	2.2	9
133	Prediction of solute breakthrough from scaled soil physical properties. Journal of Hydrology, 1989, 105, 263-273.	5.4	8
134	Preface: Soil Biophysical Contributions to Hydrological Processes in the Vadose Zone. Vadose Zone Journal, 2007, 6, 267-268.	2.2	8
135	Vadose zone measurement and modeling. Scientia Agricola, 1997, 54, 22-26.	1.2	7
136	Electrical Resistivity Tomography of the Root Zone. SSSA Special Publication Series, 0, , 223-245.	0.2	6
137	Applications of Neutron Imaging in Soil-Water-Root Systems. SSSA Special Publication Series, 0, , 113-136.	0.2	6
138	Sampling Strategies in Forest Hydrology and Biogeochemistry. Ecological Studies, 2011, , 29-44.	1.2	6
139	Analytical Model for Vadose Zone Solute Transport with Root Water and Solute Uptake. Vadose Zone Journal, 2002, 1, 158.	2.2	6
140	Treatment of spatially variable groundwater levels in one-dimensional stochastic unsaturated water-flow modelling. Agricultural Water Management, 1988, 15, 19-36.	5.6	5
141	Water Flow in Soils. Soil Science, 1994, 157, 264.	0.9	5
142	SOIL PHYSICAL PROPERTIES, PROCESSES AND ASSOCIATED ROOT-SOIL INTERACTIONS. , 2006, , 13-29.		5
143	Modelagem matemÃ _i tica como metodologia de análise do crescimento e arquitetura de sistemas radiculares. Scientia Agricola, 2000, 57, 683-691.	1.2	4
144	Alterações estruturais do sistema radicular de soja em resposta à disponibilidade de fósforo no solo. Scientia Agricola, 2001, 58, 55-60.	1.2	4

#	ARTICLE	IF	CITATIONS
145	Transdisciplinary soil hydrology. Vadose Zone Journal, 2020, 19, e20085.	2.2	3
146	Response to "Comment on †Soil Moisture Response to Snowmelt and Rainfall in a Sierra Nevada Mixed onifer Forest'― Vadose Zone Journal, 2012, 11, vzj2012.0004r.	2.2	3
147	Water quality and subsurface soil variabilities affect infiltration. California Agriculture, 1990, 44, 10-12.	0.8	3
148	Multi-Functional Heat Pulse Probe for the Simultaneous Measurement of Soil Water Content, Solute Concentration, and Heat Transport Parameters. Vadose Zone Journal, 2003, 2, 561.	2.2	3
149	Estimation of local and regional components of drain-flow from an irrigated field. Irrigation Science, 1994, 15, 153.	2.8	2
150	Selected research opportunities in soil physics. Scientia Agricola, 1997, 54, 51-77.	1.2	2
151	Analytical Model for Vadose Zone Solute Transport with Root Water and Solute Uptake. Vadose Zone Journal, 2002, 1, 158-171.	2.2	2
152	Editorial: The Future of Vadose Zone Journal. Vadose Zone Journal, 2006, 5, 125-125.	2.2	2
153	<i>Vadose Zone Journal</i> : A Decade of Multidisciplinary Research. Vadose Zone Journal, 2013, 12, 1-3.	2.2	2
154	An Alternative Tensiometer Design for Deep Vadose Zone Monitoring. Soil Science Society of America Journal, 2015, 79, 1293-1296.	2.2	2
155	Parameter identification of large-scale spatially distributed vadose zone properties. Developments in Water Science, 2004, 55, 1297-1304.	0.1	1
156	Analytical Modeling of Soil Solution Monitoring by Diffusion in Porous Cups. Transport in Porous Media, 2010, 81, 341-360.	2.6	1
157	Effect of Fertigation Strategy on Nitrogen Availability and Nitrate Leaching using Microirrigation. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1096A-1096.	1.0	1
158	Vadose Zone Science and Technology Solutions Vadose Zone Journal, 2002, 1, 199.	2.2	1
159	SAMPLING DESIGN FOR SOIL MOISTURE MEASUREMENTS IN LARGE FIELD TRIALS1. Soil Science, 1995, 159, 155-161.	0.9	1
160	Soil Physics Companion. Soil Science, 2002, 167, 838-839.	0.9	0
161	Ground-Penetrating Radar reflection data sensitivity to van Genuchten parameter variations GPR reflection data sensitivity to van Genuchten parameters. , 2010, , .		0

Long-Term Regional-Scale Modeling of Soil Salinity. , 2011, , 899-922.

#	Article	IF	CITATIONS
163	Building a Stronger Society and Increasing Our Relevance in the World. CSA News, 2014, 59, 20-21.	0.0	Ο
164	SSSA Is Going Global. CSA News, 2014, 59, 22-23.	0.0	0
165	Soil Science May Be Key to Cracking the Food Security Code. CSA News, 2014, 59, 18-19.	0.0	Ο
166	SSSA Partnership with CSSA and ASA Remains Strong. CSA News, 2014, 59, 30-31.	0.0	0
167	A Retrospective of this Year as SSSA President. CSA News, 2014, 59, 18-19.	0.0	Ο
168	Scales and Scaling as a Framework for Synthesizing Irrigated Agroecosystem Research on the Westside San Joaquin Valley. Global Issues in Water Policy, 2014, , 99-122.	0.1	0
169	In laboratory and field tests, water conditioners fail to improve infiltration or prevent clogging. California Agriculture, 1992, 46, 22-25.	0.8	0