Kazuhisa Iwabuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4696263/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of anti-lipoarabinomannan antibodies against mannan core and their effects on phagocytosis of mycobacteria by human neutrophils. Tuberculosis, 2022, 132, 102165.	1.9	7
2	Lactosylceramide-enriched microdomains mediate human neutrophil immunological functions via carbohydrate-carbohydrate interaction. Glycoconjugate Journal, 2022, 39, 239-246.	2.7	7
3	Mycobacterium avium-intracellulare complex promote release of pro-inflammatory enzymes matrix metalloproteinases by inducing neutrophil extracellular trap formation. Scientific Reports, 2022, 12, 5181.	3.3	9
4	Complement Activation in Patients With Heat-Related Illnesses: Soluble CD59 Is a Novel Biomarker Indicating Severity of Heat-Related Illnesses. , 2022, 4, e0678.		1
5	Editorial: Role of Lipid Rafts in Anti-microbial Immune Response. Frontiers in Immunology, 2021, 12, 654776.	4.8	7
6	Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. International Journal of Molecular Sciences, 2021, 22, 9565.	4.1	6
7	Lysophosphatidylglucoside is a GPR55 -mediated chemotactic molecule for human monocytes and macrophages. Biochemical and Biophysical Research Communications, 2021, 569, 86-92.	2.1	6
8	Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Frontiers in Cell and Developmental Biology, 2020, 8, 589799.	3.7	13
9	Physiotherapists' Awareness of Infection Prevention and Behaviors. Japanese Journal of Environmental Infections, 2020, 35, 87-96.	0.1	0
10	Current Status and Issues of Learning Norovirus Infection Control of the Three Types of Staff Members Who Work at Special Elderly Nursing Home. Japanese Journal of Environmental Infections, 2020, 35, 168-174.	0.1	1
11	KIF11 as a Potential Marker of Spermatogenesis Within Mouse Seminiferous Tubule Cross-sections. Journal of Histochemistry and Cytochemistry, 2019, 67, 813-824.	2.5	12
12	Kras promotes myeloid differentiation through Wnt/β atenin signaling. FASEB BioAdvances, 2019, 1, 435-449.	2.4	5
13	Effect of Propofol on the Production of Inflammatory Cytokines by Human Polarized Macrophages. Mediators of Inflammation, 2019, 2019, 1-13.	3.0	34
14	Molecular Mechanisms Underlying the Immunological Activities of Glycosphingolipid-Enriched Lipid Rafts in Phagocytes. , 2019, , .		0
15	Glycosphingolipid-Enriched Lipid Rafts-Mediated Pathogen Recognition Systems. Trends in Glycoscience and Glycotechnology, 2019, 31, E141-E149.	0.1	1
16	Glycosphingolipid-Enriched Lipid Rafts-Mediated Pathogen Recognition Systems. Trends in Glycoscience and Glycotechnology, 2019, 31, J139-J147.	0.1	0
17	The regulatory roles of glycosphingolipidâ€enriched lipid rafts in immune systems. FEBS Letters, 2018, 592, 3921-3942.	2.8	60
18	Gangliosides in the Immune System: Role of Glycosphingolipids and Glycosphingolipid-Enriched Lipid Rafts in Immunological Functions. Methods in Molecular Biology, 2018, 1804, 83-95.	0.9	20

Каzuhisa Iwabuchi

#	Article	IF	CITATIONS
19	Sphingolipids in Inflammation: From Bench to Bedside. Mediators of Inflammation, 2016, 2016, 1-2.	3.0	8
20	Fluorescence imaging of ATP in neutrophils from patients with sepsis using organelle-localizable fluorescent chemosensors. Annals of Intensive Care, 2016, 6, 64.	4.6	6
21	Expression of phosphatidylglucoside in human skin disorders atopic dermatitis and psoriasis. Journal of Dermatological Science, 2016, 84, e107.	1.9	Ο
22	Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Science Signaling, 2016, 9, ra101.	3.6	58
23	Integrative genomic and proteomic analyses identifies glycerol-3-phosphate acyltransferase as a target of low-dose ionizing radiation in EBV infected-B cells. International Journal of Radiation Biology, 2016, 92, 24-34.	1.8	11
24	Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses. Frontiers in Bioscience - Landmark, 2015, 20, 325-334.	3.0	17
25	Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	39
26	Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. Journal of Lipid Research, 2015, 56, 129-141.	4.2	46
27	Properties and functions of lactosylceramide from mouse neutrophils. Glycobiology, 2015, 25, 655-668.	2.5	32
28	Transbilayer lipid distribution in nano scale. Journal of Cell Science, 2015, 128, 1627-38.	2.0	95
29	Organization and functions of glycolipid-enriched microdomains in phagocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 90-97.	2.4	31
30	Ptdglc-Enriched Lipid Rafts Are a Novel Platform for Apoptosis Signaling in Human Neutrophilic Lineage Cells. Blood, 2015, 126, 4968-4968.	1.4	0
31	2P211 Transbilayer and lateral lipid distribution in plasma membranes in nano scale(13A. Biological) Tj ETQq1 1	0.784314 0.1	∙rg₿T /Overloc
32	Pseudomonas-Derived Ceramidase Induces Production of Inflammatory Mediators from Human Keratinocytes via Sphingosine-1-Phosphate. PLoS ONE, 2014, 9, e89402.	2.5	24
33	GSL-Enriched Membrane Microdomains in Innate Immune Responses. Archivum Immunologiae Et Therapiae Experimentalis, 2013, 61, 217-228.	2.3	36
34	Effects of benzo(a)pyrene on gene expression in three-dimensionally cultured human keratinocytes. Journal of Dermatological Science, 2013, 69, e17.	1.9	0
35	Secreted aspartic proteinase from Candida albicans acts as a chemoattractant for peripheral neutrophils. Journal of Dermatological Science, 2013, 72, 191-193.	1.9	10
36	Inhibition of Connective Tissue Growth Factor Ameliorates Disease in a Murine Model of Rheumatoid Arthritis. Arthritis and Rheumatism, 2013, 65, 1477-1486.	6.7	36

Каzuhisa Iwabuchi

#	Article	IF	CITATIONS
37	815. Critical Care Medicine, 2013, 41, A203.	0.9	0
38	Involvement of ganglioside GT1b in glutamate release from neuroblastoma cells. Neuroscience Letters, 2012, 517, 140-143.	2.1	2
39	Membrane microdomains in immunity: Glycosphingolipidâ€enriched domainâ€mediated innate immune responses. BioFactors, 2012, 38, 275-283.	5.4	16
40	Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages. Inflammation Research, 2012, 61, 69-78.	4.0	98
41	Regenerating gene (REG) 1 alpha promotes pannus progression in patients with rheumatoid arthritis. Modern Rheumatology, 2012, 22, 228-237.	1.8	7
42	Interplay of neuropilin-1 and semaphorin 3A after partial hepatectomy in rats. World Journal of Gastroenterology, 2012, 18, 5034.	3.3	7
43	The novel neutrophil differentiation marker phosphatidylglucoside is involved in Fas-dependent apoptosis. Inflammation and Regeneration, 2012, 32, 213-221.	3.7	Ο
44	Involvement of cholesterol-enriched microdomains in class A scavenger receptor-mediated responses in human macrophages. Atherosclerosis, 2011, 215, 60-69.	0.8	26
45	Different responses to oxidized low-density lipoproteins in human polarized macrophages. Lipids in Health and Disease, 2011, 10, 1.	3.0	113
46	The Novel Neutrophil Differentiation Marker Phosphatidylglucoside Mediates Neutrophil Apoptosis. Journal of Immunology, 2011, 186, 5323-5332.	0.8	25
47	Significance of glycosphingolipid fatty acid chain length on membrane microdomainâ€mediated signal transduction. FEBS Letters, 2010, 584, 1642-1652.	2.8	62
48	Role of Stromal Microenvironment In Non-Pharmacological Resistance of CML to Tyrosine Kinase Inhibitors through Lyn/CXCR4 Interactions In Lipid Rafts Blood, 2010, 116, 3390-3390.	1.4	1
49	Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. Journal of Cell Science, 2009, 122, 289-299.	2.0	109
50	Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconjugate Journal, 2009, 26, 615-621.	2.7	49
51	Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthritis Research and Therapy, 2009, 11, R174.	3.5	54
52	Role of Stromal Microenvironment in Non-Pharmacological Resistance of CML to Imatinib through Lyn/CXCR4 Interactions Blood, 2009, 114, 4248-4248.	1.4	0
53	Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconjugate Journal, 2008, 25, 357-374.	2.7	101
54	Role of glycosphingolipid-enriched microdomains in innate immunity: Microdomain-dependent phagocytic cell functions. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 383-392.	2.4	56

#	Article	IF	CITATIONS
55	Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. Journal of Leukocyte Biology, 2008, 83, 728-741.	3.3	83
56	Lactosylceramide is a Pattern Recognition Receptor that Forms Lyn-Coupled Membrane Microdomains on Neutrophils. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2008, 8, 327-335.	0.5	4
57	Proteomic analysis of lactosylceramide-enriched membrane microdomains. Trends in Glycoscience and Glycotechnology, 2008, 20, 1-15.	0.1	1
58	Special issue of "Organization and functions of lipid membrane microdomains― Trends in Glycoscience and Glycotechnology, 2008, 20, 273-275.	0.1	0
59	2-Methoxyestradiol Reduces Monocyte Adhesion to Aortic Endothelial Cells in Ovariectomized Rats. Endocrine Journal, 2007, 54, 1027-1031.	1.6	23
60	Proteomic analysis of plasma membrane lipid rafts of HLâ€60 cells. Proteomics, 2007, 7, 2398-2409.	2.2	35
61	Decreased salivary vascular endothelial growth factor in elderly patients with pneumonia during the course of recovery. Geriatrics and Gerontology International, 2006, 6, 182-185.	1.5	Ο
62	Induction of human neutrophil chemotaxis by Candida albicans-derived Â-1,6-long glycoside side-chain-branched Â-glucan. Journal of Leukocyte Biology, 2006, 80, 204-211.	3.3	97
63	Isolation and mass spectrometry characterization of molecular species of lactosylceramides using liquid chromatography-electrospray ion trap mass spectrometry. Analytical Biochemistry, 2005, 337, 316-324.	2.4	29
64	Hepatocyte Growth Factor Receptor Is a Coreceptor for Adeno-Associated Virus Type 2 Infection. Journal of Virology, 2005, 79, 609-614.	3.4	210
65	Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor Î ³ -chain play a pivotal role in the development of myocardial ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2005, 39, 856-864.	1.9	40
66	Structure and Functions of Glycosignaling Domain. Trends in Glycoscience and Glycotechnology, 2005, 17, 1-14.	0.1	5
67	Distribution and Transport of Cholesterol-rich Membrane Domains Monitored by a Membrane-impermeant Fluorescent Polyethylene Glycol-derivatized Cholesterol. Journal of Biological Chemistry, 2004, 279, 23790-23796.	3.4	85
68	ACID EXPOSURE POTENTIATES INTERCELLULAR ADHESION MOLECULE-1 AND E-CADHERIN EXPRESSION ON A549 ALVEOLAR LINING EPITHELIAL CELLS. Experimental Lung Research, 2003, 29, 389-400.	1.2	2
69	Sphingosine-dependent Protein Kinase-1, Directed to 14-3-3, Is Identified as the Kinase Domain of Protein Kinase Cl´. Journal of Biological Chemistry, 2003, 278, 41557-41565.	3.4	66
70	Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood, 2002, 100, 1454-1464.	1.4	127
71	A cathelicidin family of human antibacterial peptide LLâ€37 induces mast cell chemotaxis. Immunology, 2002, 106, 20-26.	4.4	374
72	Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood, 2002, 100, 1454-64.	1.4	47

KAZUHISA IWABUCHI

#	Article	IF	CITATIONS
73	Effect of Synthetic Sialyl 2→1 Sphingosine and Other Glycosylsphingosines on the Structure and Function of the "Glycosphingolipid Signaling Domain (GSD)―in Mouse Melanoma B16 Cells. Biochemistry, 2000, 39, 2459-2468.	2.5	29
74	Glycosphingolipid-enriched Signaling Domain in Mouse Neuroblastoma Neuro2a Cells. Journal of Biological Chemistry, 1999, 274, 20916-20924.	3.4	165
75	Short exposure of intestinal epithelial cells to TNF-α and histamine induces Mac-1-mediated neutrophil adhesion independent of protein synthesis. Journal of Leukocyte Biology, 1999, 66, 437-446.	3.3	18
76	GM3-enriched Microdomain Involved in Cell Adhesion and Signal Transduction through Carbohydrate-Carbohydrate Interaction in Mouse Melanoma B16 Cells. Journal of Biological Chemistry, 1998, 273, 9130-9138.	3.4	280
77	Separation of "Glycosphingolipid Signaling Domain―from Caveolin-containing Membrane Fraction in Mouse Melanoma B16 Cells and Its Role in Cell Adhesion Coupled with Signaling. Journal of Biological Chemistry, 1998, 273, 33766-33773.	3.4	276
78	New insights in glycosphingolipid function: "glycosignaling domain," a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology, 1998, 8, xi-xviii.	2.5	291
79	Modulation of neutrophil adherence to endothelial cells by platelet-derived adherence-inhibiting factor through interactions with selectin molecules. Journal of Leukocyte Biology, 1998, 63, 500-508.	3.3	5
80	Purification of the 28.5 kDa cytosolic protein involved in the activation of NADPH oxidase from guinea pig neutrophils. FEBS Letters, 1992, 302, 69-72.	2.8	1
81	Evaluation of the expression of the cationic peptide gene in various types of leukocytes. FEBS Letters, 1992, 302, 279-283.	2.8	22
82	Structure of the guinea pig neutrophil cationic peptide gene. FEBS Letters, 1992, 303, 31-35.	2.8	15
83	Expression of insulin-like growth factor-IA and factor-IB mRNA in human liver, hepatoma cells, macrophage-like cells and fibroblast. FEBS Letters, 1991, 280, 79-83.	2.8	21
84	Characterization of cDNA clones encoding guinea pig neutrophil cationic peptides. FEBS Letters, 1991, 280, 287-291.	2.8	26