
Alexander G Zestos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4695776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modified Sawhorse Waveform for the Voltammetric Detection of Oxytocin. Journal of the Electrochemical Society, 2022, 169, 017512.	2.9	3
2	High resolution voltammetric and field-effect transistor readout of carbon fiber microelectrode biosensors. Sensors & Diagnostics, 2022, 1, 460-464.	3.8	2
3	Carbon Fiber Microelectrode pH Sensors with Voltammetry and Field Effect Transistors. ECS Meeting Abstracts, 2022, MA2022-01, 2229-2229.	0.0	0
4	Direct Detection of DNA and RNA on Carbon Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry. ACS Omega, 2021, 6, 6571-6581.	3.5	10
5	Oxytocin Peptide Detection with Carbon Electrodes and Fast Scan Cyclic Voltammetry. ECS Meeting Abstracts, 2021, MA2021-01, 1677-1677.	0.0	1
6	Review—Recent Advances in FSCV Detection of Neurochemicals via Waveform and Carbon Microelectrode Modification. Journal of the Electrochemical Society, 2021, 168, 057520.	2.9	18
7	Effects of a novel tamoxifenâ€analogue (6c) on methamphetamine induced neurotoxicity. FASEB Journal, 2021, 35, .	0.5	0
8	Multiplexing neurochemical detection with carbon fiber multielectrode arrays using fast-scan cyclic voltammetry. Analytical and Bioanalytical Chemistry, 2021, 413, 6715-6726.	3.7	8
9	Polyvinyl alcohol-montmorillonite composites for water purification: Analysis of clay mineral cation exchange and composite particle synthesis. Polyhedron, 2021, 205, 115297.	2.2	6
10	Electrochemistry for neurochemical analysis. Analytical and Bioanalytical Chemistry, 2021, 413, 6687-6688.	3.7	1
11	Carbon Fiber Multielectrode Array (CFMEA) for Multiplexing Neurochemical Measurements with Fast Scan Cyclic Voltammetry. ECS Meeting Abstracts, 2021, MA2021-02, 1606-1606.	0.0	0
12	Polymer-Modified Carbon Fiber Microelectrodes for Neurochemical Detection of Dopamine and Metabolites. ECS Transactions, 2020, 97, 901-927.	0.5	5
13	Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry. Sensors, 2020, 20, 1173.	3.8	36
14	Timed Electrodeposition of PEDOT:Nafion onto Carbon Fiber-Microelectrodes Enhances Dopamine Detection in Zebrafish Retina. Journal of the Electrochemical Society, 2020, 167, 115501.	2.9	15
15	Polymer Modified Carbon Fiber Microelectrodes for Precision Neurotransmitter Metabolite Measurements. Journal of the Electrochemical Society, 2020, 167, 167507.	2.9	6
16	Carbon Fiber Microelectrodes Modified with Polymers for Enhanced Neurochemical Detection of Dopamine and Metabolites. ECS Meeting Abstracts, 2020, MA2020-01, 2916-2916.	0.0	0
17	Multiplexing Neurochemical Detection Using Carbon Electrodes and Fast Scan Cyclic Voltammetry. ECS Meeting Abstracts, 2020, MA2020-01, 2444-2444.	0.0	0
18	Fast Scan Cyclic Voltammetry As a DNA Sensor Using Carbon Fiber Microelectrodes. ECS Meeting Abstracts, 2020, MA2020-01, 2837-2837.	0.0	0

Alexander G Zestos

#	Article	IF	CITATIONS
19	The Monitoring of Neurochemical Dynamics in Zebrafish Retina using Fast Scan Cyclic Voltammetry. FASEB Journal, 2020, 34, 1-1.	0.5	2
20	Polymer Modified Carbon Fiber Multielectrode Arrays for Precision Neurotransmitter Measurements. ECS Meeting Abstracts, 2020, MA2020-02, 3321-3321.	0.0	0
21	Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies. ACS Chemical Neuroscience, 2019, 10, 1875-1883.	3.5	19
22	Gold Nanoparticle Modified Carbon Fiber Microelectrodes for Enhanced Neurochemical Detection. Journal of Visualized Experiments, 2019, , .	0.3	13
23	Polymer modified carbon fiber-microelectrodes and waveform modifications enhance neurotransmitter metabolite detection. Analytical Methods, 2019, 11, 1620-1630.	2.7	27
24	Ruboxistaurin Reduces Cocaine-Stimulated Increases in Extracellular Dopamine by Modifying Dopamine-Autoreceptor Activity. ACS Chemical Neuroscience, 2019, 10, 1960-1969.	3.5	13
25	Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy. Neurobiology of Disease, 2019, 121, 177-186.	4.4	23
26	Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters. International Journal of Electrochemistry, 2018, 2018, 1-19.	2.4	31
27	An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nature Medicine, 2018, 24, 814-822.	30.7	67
28	Communication—Carbon Nanotube Fiber Microelectrodes for High Temporal Measurements of Dopamine. Journal of the Electrochemical Society, 2018, 165, G3071-G3073.	2.9	34
29	Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects. Neuropsychopharmacology, 2017, 42, 1940-1949.	5.4	23
30	Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical Monitoring. AAPS Journal, 2017, 19, 1284-1293.	4.4	57
31	(Invited) Carbon Nanotube-Based Microelectrodes for Enhanced Neurochemical Detection. ECS Transactions, 2017, 80, 1497-1509.	0.5	10
32	Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine. Analytical Chemistry, 2016, 88, 645-652.	6.5	113
33	PKCÎ ² Inhibitors Attenuate Amphetamine-Stimulated Dopamine Efflux. ACS Chemical Neuroscience, 2016, 7, 757-766.	3.5	32
34	Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. Analyst, The, 2015, 140, 7283-7292.	3.5	56
35	Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters. Analytical Chemistry, 2014, 86, 8568-8575.	6.5	77
36	High Temporal Resolution Measurements of Dopamine with Carbon Nanotube Yarn Microelectrodes. Analytical Chemistry, 2014, 86, 5721-5727.	6.5	91

#	Article	IF	CITATIONS
37	Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes. Sensors and Actuators B: Chemical, 2013, 182, 652-658.	7.8	31
38	An Easy Method To Monitor Lactide Polymerization with a Boron Fluorescent Probe. ACS Applied Materials & Interfaces, 2010, 2, 3069-3074.	8.0	16
39	Metalâ€exchanged clay and zeolite additives as smoke suppressants and fire retardants for poly(vinyl) Tj ETQq1 J	0.78431 3.4	4 rgBT /Ovei
40	A new synergistic effect in the smoke suppression of plasticized poly(vinyl chloride) by mixedâ€metal Cu(II) oxides. Journal of Vinyl and Additive Technology, 2008, 14, 16-20.	3.4	9
41	Mechanism of action and effectiveness of ester thiols as thermal stabilizers for poly(vinyl chloride). Journal of Vinyl and Additive Technology, 2007, 13, 170-175.	3.4	12