
Melanie A Samuel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4695679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retinal patterns and the cellular repertoire of neuropsin (Opn5) retinal ganglion cells. Journal of Comparative Neurology, 2022, 530, 1247-1262.	1.6	9
2	Rapid 3D-STORM imaging of diverse molecular targets in tissue. Cell Reports Methods, 2022, 2, 100253.	2.9	3
3	LKB1 and AMPK instruct cone nuclear position to modify visual function. Cell Reports, 2021, 34, 108698.	6.4	7
4	Development and maintenance of vision's first synapse. Developmental Biology, 2021, 476, 218-239.	2.0	23
5	Spatiotemporal gene expression patterns reveal molecular relatedness between retinal laminae. Journal of Comparative Neurology, 2020, 528, 729-755.	1.6	4
6	C1q Regulates Horizontal Cell Neurite Confinement in the Outer Retina. Frontiers in Neural Circuits, 2020, 14, 583391.	2.8	10
7	Cover Image, Volume 528, Issue 5. Journal of Comparative Neurology, 2020, 528, C1.	1.6	0
8	LKB1 coordinates neurite remodeling to drive synapse layer emergence in the outer retina. ELife, 2020, 9, .	6.0	6
9	Neuroscience in the blink of an eye: using the retina to understand the brain. Biochemist, 2020, 42, 18-24.	0.5	1
10	Becoming a Principal Investigator: Designing and Navigating Your Academic Adventure. Neuron, 2019, 103, 959-963.	8.1	1
11	Progressive myoclonic epilepsy-associated gene Kctd7 regulates retinal neurovascular patterning and function. Neurochemistry International, 2019, 129, 104486.	3.8	9
12	COMPLEMENT CONTRIBUTES TO ALZHEIMER'S DISEASE-INDUCED SYNAPSE DECLINE IN THE MURINE RETINA Innovation in Aging, 2019, 3, S967-S967.	0.1	0
13	MICROGLIA MAY INSTRUCT SYNAPTIC FATE VIA SIRPα IN MOUSE RETINA. Innovation in Aging, 2019, 3, S967-S967.	0.1	0
14	Microglia in the developing retina. Neural Development, 2019, 14, 12.	2.4	75
15	Role for Wnt Signaling in Retinal Neuropil Development: Analysis via RNA-Seq and InÂVivo Somatic CRISPR Mutagenesis. Neuron, 2018, 98, 109-126.e8.	8.1	64
16	Rapid and Integrative Discovery of Retina Regulatory Molecules. Cell Reports, 2018, 24, 2506-2519.	6.4	28
17	LKB1 and AMPK regulate synaptic remodeling in old age. Nature Neuroscience, 2014, 17, 1190-1197.	14.8	106
18	Differential Replication of Pathogenic and Nonpathogenic Strains of West Nile Virus within Astrocytes. Journal of Virology, 2013, 87, 2814-2822.	3.4	54

MELANIE A SAMUEL

#	Article	IF	CITATIONS
19	Agrin and Synaptic Laminin Are Required to Maintain Adult Neuromuscular Junctions. PLoS ONE, 2012, 7, e46663.	2.5	95
20	Age-Related Alterations in Neurons of the Mouse Retina. Journal of Neuroscience, 2011, 31, 16033-16044.	3.6	149
21	Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems. PLoS Pathogens, 2010, 6, e1000764.	4.7	234
22	The Immune Adaptor Molecule SARM Modulates Tumor Necrosis Factor Alpha Production and Microglia Activation in the Brainstem and Restricts West Nile Virus Pathogenesis. Journal of Virology, 2009, 83, 9329-9338.	3.4	141
23	Toll-Like Receptor 3 Has a Protective Role against West Nile Virus Infection. Journal of Virology, 2008, 82, 10349-10358.	3.4	298
24	Interferon Regulatory Factor IRF-7 Induces the Antiviral Alpha Interferon Response and Protects against Lethal West Nile Virus Infection. Journal of Virology, 2008, 82, 8465-8475.	3.4	137
25	Identification of Novel Small-Molecule Inhibitors of West Nile Virus Infection. Journal of Virology, 2007, 81, 11992-12004.	3.4	45
26	Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17140-17145.	7.1	194
27	Caspase 3-Dependent Cell Death of Neurons Contributes to the Pathogenesis of West Nile Virus Encephalitis. Journal of Virology, 2007, 81, 2614-2623.	3.4	157
28	Cell-Specific IRF-3 Responses Protect against West Nile Virus Infection by Interferon-Dependent and -Independent Mechanisms. PLoS Pathogens, 2007, 3, e106.	4.7	164
29	Pathogenesis of West Nile Virus Infection: a Balance between Virulence, Innate and Adaptive Immunity, and Viral Evasion. Journal of Virology, 2006, 80, 9349-9360.	3.4	290
30	CD8 + T Cells Require Perforin To Clear West Nile Virus from Infected Neurons. Journal of Virology, 2006, 80, 119-129.	3.4	198
31	Variable Pleiotropic Effects From Mutations at the Same Locus Hamper Prediction of Fitness From a Fitness Component. Genetics, 2006, 172, 2047-2056.	2.9	29
32	Resistance to Alpha/Beta Interferon Is a Determinant of West Nile Virus Replication Fitness and Virulence. Journal of Virology, 2006, 80, 9424-9434.	3.4	177
33	PKR and RNase L Contribute to Protection against Lethal West Nile Virus Infection by Controlling Early Viral Spread in the Periphery and Replication in Neurons. Journal of Virology, 2006, 80, 7009-7019.	3.4	220
34	Gamma Interferon Plays a Crucial Early Antiviral Role in Protection against West Nile Virus Infection. Journal of Virology, 2006, 80, 5338-5348.	3.4	179
35	Neuronal CXCL10 Directs CD8 ⁺ T-Cell Recruitment and Control of West Nile Virus Encephalitis. Journal of Virology, 2005, 79, 11457-11466.	3.4	386
36	Alpha/Beta Interferon Protects against Lethal West Nile Virus Infection by Restricting Cellular Tropism and Enhancing Neuronal Survival. Journal of Virology, 2005, 79, 13350-13361.	3.4	377