Jonathan Chernoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4695464/publications.pdf

Version: 2024-02-01

227 papers

17,510 citations

69 h-index 126

g-index

371 all docs

371 docs citations

times ranked

371

15925 citing authors

#	Article	IF	CITATIONS
1	Inactivation of p21-Activated Kinase 2 (Pak2) Inhibits the Development of <i>Nf2</i> Peficient Tumors by Restricting Downstream Hedgehog and Wnt Signaling. Molecular Cancer Research, 2022, 20, 699-711.	3.4	6
2	Pak2 Regulation of Nrf2 Serves as a Novel Signaling Nexus Linking ER Stress Response and Oxidative Stress in the Heart. Frontiers in Cardiovascular Medicine, 2022, 9, 851419.	2.4	14
3	Paracrine signal emanating from stressed cardiomyocytes aggravates inflammatory microenvironment in diabetic cardiomyopathy. IScience, 2022, 25, 103973.	4.1	3
4	Targeting effector pathways in RAC1 ^{P29S} -driven malignant melanoma. Small GTPases, 2021, 12, 273-281.	1.6	12
5	Regulation of MST complexes and activity via SARAH domain modifications. Biochemical Society Transactions, 2021, 49, 675-683.	3.4	9
6	2020 in 20/20 hindsight. Molecular Biology of the Cell, 2021, 32, 1007-1008.	2.1	0
7	PAK1 inhibition reduces tumor size and extends the lifespan of mice in a genetically engineered mouse model of Neurofibromatosis Type 2 (NF2). Human Molecular Genetics, 2021, 30, 1607-1617.	2.9	12
8	A Facile Method to Engineer Mutant Kras Alleles in an Isogenic Cell Background. Methods in Molecular Biology, 2021, 2262, 323-334.	0.9	1
9	p21-Activated Kinase 1 Promotes Breast Tumorigenesis via Phosphorylation and Activation of the Calcium/Calmodulin-Dependent Protein Kinase II. Frontiers in Cell and Developmental Biology, 2021, 9, 759259.	3.7	5
10	RAC1 as a Therapeutic Target in Malignant Melanoma. Trends in Cancer, 2020, 6, 478-488.	7.4	35
11	Functional proteomics interrogation of the kinome identifies MRCKA as a therapeutic target in high-grade serous ovarian carcinoma. Science Signaling, 2020, 13, .	3.6	20
12	A New Rho(d) Map to Diffuse Gastric Cancer. Cancer Discovery, 2020, 10, 182-184.	9.4	1
13	Modification of the base excision repair enzyme MBD4 by the small ubiquitin-like molecule SUMO1. DNA Repair, 2019, 82, 102687.	2.8	4
14	Combined inhibition of Aurora A and p21-activated kinase 1 as a new treatment strategy in breast cancer. Breast Cancer Research and Treatment, 2019, 177, 369-382.	2.5	36
15	Nonsteroidal sulfamate derivatives as new therapeutic approaches for Neurofibromatosis 2 (NF2). BMC Pharmacology & Doxicology, 2019, 20, 67.	2.4	3
16	Intrinsic Resistance to MEK Inhibition through BET Protein–Mediated Kinome Reprogramming in NF1-Deficient Ovarian Cancer. Molecular Cancer Research, 2019, 17, 1721-1734.	3.4	22
17	Pak2 as a Novel Therapeutic Target for Cardioprotective Endoplasmic Reticulum Stress Response. Circulation Research, 2019, 124, 696-711.	4.5	48
18	PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discovery, 2018, 8, 866-883.	9.4	141

#	Article	IF	Citations
19	Hras helps hippo heterodimerize to evade tumor suppression. Small GTPases, 2018, 9, 327-331.	1.6	4
20	Suppression of RAC1-driven malignant melanoma by group A PAK inhibitors. Oncogene, 2018, 37, 944-952.	5.9	43
21	How to get and keep your lab funded. Molecular Biology of the Cell, 2018, 29, 2519-2521.	2.1	0
22	Detection of Heterodimerization of Protein Isoforms Using an in Situ Proximity Ligation Assay. Journal of Visualized Experiments, 2018, , .	0.3	0
23	Group I Paks are essential for epithelial- mesenchymal transition in an Apc-driven model of colorectal cancer. Nature Communications, 2018, 9, 3473.	12.8	22
24	A new concept in NF2 pharmacotherapy: targeting fatty acid synthesis. Oncoscience, 2018, 5, 126-127.	2.2	1
25	Medium throughput biochemical compound screening identifies novel agents for pharmacotherapy of neurofibromatosis type 1. Biochimie, 2017, 135, 1-5.	2.6	7
26	Targeting PAK1. Biochemical Society Transactions, 2017, 45, 79-88.	3.4	69
27	Rac 1., 2017,, 817-821.		0
28	Targeting group I p21-activated kinases to control malignant peripheral nerve sheath tumor growth and metastasis. Oncogene, 2017, 36, 5421-5431.	5.9	28
29	Alfred G. Knudson Jr, MD, PhD: In Memoriam (1922–2016). Cancer Research, 2017, 77, 815-816.	0.9	0
30	Group I Paks Promote Skeletal Myoblast Differentiation <i>In Vivo</i> and <i>In Vitro</i> . Molecular and Cellular Biology, 2017, 37, .	2.3	32
31	PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature, 2017, 550, 133-136.	27.8	146
32	Pak1 mediates the stimulatory effect of insulin and curcumin on hepatic ChREBP expression. Journal of Molecular Cell Biology, 2017, 9, 384-394.	3.3	6
33	An Essential Role for the Tumor-Suppressor Merlin in Regulating Fatty Acid Synthesis. Cancer Research, 2017, 77, 5026-5038.	0.9	17
34	The Group I Pak inhibitor Frax-1036 sensitizes 11q13-amplified ovarian cancer cells to the cytotoxic effects of Rottlerin. Small GTPases, 2017, 8, 193-198.	1.6	11
35	Pak2 regulates myeloid-derived suppressor cell development in mice. Blood Advances, 2017, 1, 1923-1933.	5.2	13
36	Recent advances in methods to assess the activity of the kinome. F1000Research, 2017, 6, 1004.	1.6	8

#	Article	IF	Citations
37	Targeting MYC sensitizes malignant mesothelioma cells to PAK blockage-induced cytotoxicity. American Journal of Cancer Research, 2017, 7, 1724-1737.	1.4	8
38	Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. Oncotarget, 2016, 7, 76590-76603.	1.8	14
39	H-ras Inhibits the Hippo Pathway by Promoting Mst1/Mst2 Heterodimerization. Current Biology, 2016, 26, 1556-1563.	3.9	27
40	Alfred G. Knudson (1922–2016). Cell, 2016, 166, 785-786.	28.9	1
41	Resistance to BET Bromodomain Inhibitors Is Mediated by Kinome Reprogramming in Ovarian Cancer. Cell Reports, 2016, 16, 1273-1286.	6.4	165
42	p21-activated kinase 2 regulates HSPC cytoskeleton, migration, and homing via CDC42 activation and interaction with \hat{l}^2 -Pix. Blood, 2016, 127, 1967-1975.	1.4	26
43	Does salmon calcitonin cause cancer? A review and meta-analysis. Osteoporosis International, 2016, 27, 13-19.	3.1	55
44	Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene, 2016, 35, 2178-2185.	5.9	27
45	Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP. PLoS Genetics, 2016, 12, e1006290.	3.5	25
46	RAS family mutation patterns in a large cohort of CRCs Journal of Clinical Oncology, 2016, 34, 3599-3599.	1.6	0
47	Abstract 1876: Reduced Pak1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. , 2016, , .		0
48	Abstract 1242: Combination of p21-activated kinase 1 (PAK1) inhibitor FRAX1036 and Aurora-A inhibitor alisertib is effective in hormone receptor-positive breast cancer., 2016,,.		0
49	Abstract LB-001: Functional role of Pak1/Erk signaling in Rac1-related diseases. , 2016, , .		0
50	Abstract LB-011: PAK1 inhibitor FRAX1036 sensitizes ovarian cancer cells with amplified $11q13$ to cytotoxic effect of rottlerin., 2016 ,,.		0
51	Pak2 Regulates MDSC Development and Function. Blood, 2016, 128, 705-705.	1.4	0
52	Pak2 restrains endomitosis during megakaryopoiesis and alters cytoskeleton organization. Blood, 2015, 125, 2995-3005.	1.4	42
53	PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood, 2015, 126, 1118-1127.	1.4	49
54	Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets. Blood, 2015, 125, 175-184.	1.4	16

#	Article	IF	CITATIONS
55	Small molecule inhibition of group I p21-activated kinases in breast cancer induces apoptosis and potentiates the activity of microtubule stabilizing agents. Breast Cancer Research, 2015, 17, 59.	5.0	61
56	p21-Activated Kinase 2 Regulates Endothelial Development and Function through the Bmk1/Erk5 Pathway. Molecular and Cellular Biology, 2015, 35, 3990-4005.	2.3	54
57	Molecular Pathways: Targeting the Kinase Effectors of RHO-Family GTPases. Clinical Cancer Research, 2015, 21, 24-29.	7.0	51
58	Pak2 Regulates Hematopoietic Progenitor Cell Proliferation, Survival, and Differentiation. Stem Cells, 2015, 33, 1630-1641.	3.2	22
59	Regulation of mammalian Ste20 (Mst) kinases. Trends in Biochemical Sciences, 2015, 40, 149-156.	7.5	81
60	Search for Chemical Compounds for Pharmacotherapy of Neurofibromatosis Type 2. Pharmaceutical Chemistry Journal, 2015, 48, 777-782.	0.8	2
61	Pak2 Links TCR Signaling Strength to the Development of Regulatory T Cells and Maintains Peripheral Tolerance. Journal of Immunology, 2015, 195, 1564-1577.	0.8	12
62	Disruption of p21-activated kinase 1 gene diminishes atherosclerosis in apolipoprotein E-deficient mice. Nature Communications, 2015, 6, 7450.	12.8	22
63	Group I Paks as therapeutic targets in <i>NF2</i> -deficient meningioma. Oncotarget, 2015, 6, 1981-1994.	1.8	38
64	Abstract A40: Megakaryocyte endomitosis requires Pak2 to regulate actin and microtubule networks , 2015, , .		0
65	Abstract 1026: Role of Group I Paks in MPNST cell proliferation, migration and invasion. , 2015, , .		0
66	Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation. ELife, 2014, 3, e02270.	6.0	51
67	Activation of cAMP Signaling Attenuates Impaired Hepatic Glucose Disposal in Aged Male p21-Activated Protein Kinase-1 Knockout Mice. Endocrinology, 2014, 155, 2122-2132.	2.8	17
68	PAK signalling during the development and progression of cancer. Nature Reviews Cancer, 2014, 14, 13-25.	28.4	392
69	Molecular Pathways: Targeting RAC–p21-Activated Serine–Threonine Kinase Signaling in RAS-Driven Cancers. Clinical Cancer Research, 2014, 20, 4740-4746.	7.0	43
70	A Pak1/Erk Signaling Module Acts through Gata6 to Regulate Cardiovascular Development in Zebrafish. Developmental Cell, 2014, 29, 350-359.	7.0	12
71	Analysis of PTP1B sumoylation. Methods, 2014, 65, 201-206.	3.8	7
72	Potential Compensation among Group I PAK Members in Hindlimb Ischemia and Wound Healing. PLoS ONE, 2014, 9, e112239.	2.5	8

#	Article	IF	CITATIONS
73	Abstract A15: Megakaryocyte differentiation is regulated by p21-activated kinase 2., 2014, , .		O
74	Abstract A02: Pak1 kinase inhibition sensitizes $11q13$ amplified breast cancer cells to platinum based chemotherapy via downregulation of Fanconi anemia genes. , 2014, , .		0
75	Role of p21-activated kinases in cardiovascular development and function. Cellular and Molecular Life Sciences, 2013, 70, 4223-4228.	5.4	27
76	ArhGAP15, a Rac-specific GTPase-activating Protein, Plays a Dual Role in Inhibiting Small GTPase Signaling. Journal of Biological Chemistry, 2013, 288, 21117-21125.	3.4	23
77	Targeting Cdc42 in cancer. Expert Opinion on Therapeutic Targets, 2013, 17, 1263-1273.	3.4	73
78	The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment. Blood, 2013, 121, 2474-2482.	1.4	31
79	FRAX597, a Small Molecule Inhibitor of the p21-activated Kinases, Inhibits Tumorigenesis of Neurofibromatosis Type 2 (NF2)-associated Schwannomas. Journal of Biological Chemistry, 2013, 288, 29105-29114.	3.4	110
80	P21-Activated Protein Kinase 1 (Pak1) Mediates the Cross Talk between Insulin and \hat{l}^2 -Catenin on Proglucagon Gene Expression and Its Ablation Affects Glucose Homeostasis in Male C57BL/6 Mice. Endocrinology, 2013, 154, 77-88.	2.8	37
81	An in vivo Assay to Test Blood Vessel Permeability. Journal of Visualized Experiments, 2013, , e50062.	0.3	255
82	The PAK system links Rho GTPase signaling to thrombin-mediated platelet activation. American Journal of Physiology - Cell Physiology, 2013, 305, C519-C528.	4.6	41
83	p-21-Activated kinase 1 mediates gastrin-stimulated proliferation in the colorectal mucosa via multiple signaling pathways. American Journal of Physiology - Renal Physiology, 2013, 304, G561-G567.	3.4	8
84	Pak1 Kinase Links ErbB2 to \hat{I}^2 -Catenin in Transformation of Breast Epithelial Cells. Cancer Research, 2013, 73, 3671-3682.	0.9	70
85	p21 Activated Kinase Signaling Coordinates Glycoprotein Receptor Vl–Mediated Platelet Aggregation, Lamellipodia Formation, and Aggregate Stability Under Shear. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1544-1551.	2.4	34
86	Pak2 Kinase Restrains Mast Cell FcϵRI Receptor Signaling through Modulation of Rho Protein Guanine Nucleotide Exchange Factor (GEF) Activity. Journal of Biological Chemistry, 2013, 288, 974-983.	3.4	28
87	p21-Activated Kinase Inhibitors. The Enzymes, 2013, 34 Pt. B, 157-180.	1.7	28
88	The Tumor Suppressor Mst1 Promotes Changes in the Cellular Redox State by Phosphorylation and Inactivation of Peroxiredoxin-1 Protein. Journal of Biological Chemistry, 2013, 288, 8762-8771.	3.4	54
89	p21-Activated Kinase (PAK) Regulates Cytoskeletal Reorganization and Directional Migration in Human Neutrophils. PLoS ONE, 2013, 8, e73063.	2,5	47
90	Rac 1., 2013, , 1-5.		0

#	Article	IF	Citations
91	Abstract B31: Pak1 and \hat{l}^2 -catenin inhibition blocks tumor progression in ErbB2-driven breast cancer models. , 2013, , .		O
92	p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H224-H230.	3.2	24
93	Mouse models of PAK function. Cellular Logistics, 2012, 2, 84-88.	0.9	52
94	Sumoylated protein tyrosine phosphatase 1B localizes to the inner nuclear membrane and regulates the tyrosine phosphorylation of emerin. Journal of Cell Science, 2012, 125, 310-316.	2.0	21
95	p21-Activated Kinase 1 Is Required for Efficient Tumor Formation and Progression in a Ras-Mediated Skin Cancer Model. Cancer Research, 2012, 72, 5966-5975.	0.9	102
96	PKM2 Enters the Morpheein Academy. Molecular Cell, 2012, 45, 583-584.	9.7	19
97	The role of p21-activated kinase in the initiation of atherosclerosis. BMC Cardiovascular Disorders, 2012, 12, 55.	1.7	17
98	Group I p21-Activated Kinases (PAKs) Promote Tumor Cell Proliferation and Survival through the AKT1 and Raf–MAPK Pathways. Molecular Cancer Research, 2012, 10, 1178-1188.	3.4	42
99	Inhibition of p21 Activated Kinase (PAK) Reduces Airway Responsiveness In Vivo and In Vitro in Murine and Human Airways. PLoS ONE, 2012, 7, e42601.	2.5	17
100	Abstract 4865: Pak1 links the Wnt/ \hat{l}^2 -catenin pathway to ErbB2 signaling in breast cancer cells. , 2012, , .		1
101	The PAK Signaling System Links Rho Gtpase Activation to Platelet Lamellopodia Formation, Aggregation and Aggregate Stability Under Shear. Blood, 2012, 120, 1060-1060.	1.4	29
102	p21-Activated Kinases Regulate Directional Migration and Cytoskeletal Organization in Human Neutrophils. Blood, 2012, 120, 834-834.	1.4	0
103	Inhibition or Ablation of p21-activated Kinase (PAK1) Disrupts Glucose Homeostatic Mechanisms in Vivo. Journal of Biological Chemistry, 2011, 286, 41359-41367.	3.4	110
104	Rac1 Drives Melanoblast Organization during Mouse Development by Orchestrating Pseudopod- Driven Motility and Cell-Cycle Progression. Developmental Cell, 2011, 21, 722-734.	7.0	98
105			
	Role of group A p21-activated kinases in the anti-apoptotic activity of the pseudorabies virus US3 protein kinase. Virus Research, 2011, 155, 376-380.	2.2	9
106		1.9	52
106	Ablation of p21-activated kinase-1 in mice promotes isoproterenol-induced cardiac hypertrophy in association with activation of Erk1/2 and inhibition of protein phosphatase 2A. Journal of Molecular		

#	Article	IF	CITATIONS
109	Identification of the Atypical MAPK Erk3 as a Novel Substrate for p21-activated Kinase (Pak) Activity. Journal of Biological Chemistry, 2011, 286, 13603-13611.	3.4	60
110	Pak1 regulates focal adhesion strength, myosin IIA distribution, and actin dynamics to optimize cell migration. Journal of Cell Biology, 2011, 193, 1289-1303.	5.2	82
111	Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells. EMBO Journal, 2011, 30, 3160-3172.	7.8	29
112	Pak A Proteins Are Essential for Hematopoietic Stem/Progenitor Cell (HSC/P) Engraftment Through Regulation of Signaling Pathways Controlling HSC/P Proliferation, Survival, Migration, and the Actin Cytoskeleton. Blood, 2011, 118, 917-917.	1.4	0
113	An emerging role for p21-activated kinases (Paks) in viral infections. Trends in Cell Biology, 2010, 20, 160-169.	7.9	51
114	PTP1B: a double agent in metabolism and oncogenesis. Trends in Biochemical Sciences, 2010, 35, 442-449.	7.5	228
115	A Rac–Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene, 2010, 29, 5839-5849.	5.9	92
116	p21-Activated Kinases Are Required for Transformation in a Cell-Based Model of Neurofibromatosis Type 2. PLoS ONE, 2010, 5, e13791.	2.5	19
117	Arpc1b, a centrosomal protein, is both an activator and substrate of Aurora A. Journal of Cell Biology, 2010, 190, 101-114.	5.2	55
118	A Phosphotyrosine Proteomic Screen Identifies Multiple Tyrosine Kinase Signaling Pathways Aberrantly Activated in Malignant Mesothelioma. Genes and Cancer, 2010, 1, 493-505.	1.9	48
119	p21-activated kinases in ErbB2-positive breast cancer. Small GTPases, 2010, 1, 124-128.	1.6	24
120	775 THE MTOR PATHWAY IMPACTS PROLIFERATION AND CHEMOSENSITIVITY OF UROTHELIAL CARCINOMA CELLS IN VITRO AND IS HIGHLY EXPRESSED IN A SUBSET OF HUMAN BLADDER CANCERS. Journal of Urology, $2010,183,.$	0.4	0
121	Group I p21-activated kinases: Emerging roles in immune function and viral pathogenesis. International Journal of Biochemistry and Cell Biology, 2010, 42, 13-16.	2.8	19
122	Gary M. Bokoch (1954–2010). Developmental Cell, 2010, 18, 357-358.	7.0	0
123	LOV conquers (sm)All GTPases. F1000 Biology Reports, 2010, 2, .	4.0	0
124	Alphaherpesvirus US3-mediated reorganization of the actin cytoskeleton is mediated by group A p21-activated kinases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8707-8712.	7.1	71
125	Activation of Src by Protein Tyrosine Phosphatase 1B Is Required for ErbB2 Transformation of Human Breast Epithelial Cells. Cancer Research, 2009, 69, 4582-4588.	0.9	84
126	The DeMSTification of Mammalian Ste20 Kinases. Current Biology, 2009, 19, R421-R425.	3.9	70

#	Article	IF	Citations
127	PAK kinase regulates Rac GTPase and is a potential target in human schwannomas. Experimental Neurology, 2009, 218, 137-144.	4.1	34
128	p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood, 2009, 113, 2695-2705.	1.4	105
129	Interaction with LC8 Is Required for Pak1 Nuclear Import and Is Indispensable for Zebrafish Development. PLoS ONE, 2009, 4, e6025.	2.5	45
130	An Isoform-Selective, Small-Molecule Inhibitor Targets the Autoregulatory Mechanism of p21-Activated Kinase. Chemistry and Biology, 2008, 15, 322-331.	6.0	328
131	A tale of two Paks. Biology of the Cell, 2008, 100, 97-108.	2.0	288
132	Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2008, 44, 429-434.	1.9	72
133	PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. Journal of Cell Science, 2008, 121, 3729-3736.	2.0	71
134	Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/ \hat{a} mast cells. Blood, 2008, 112, 4646-4654.	1.4	70
135	Specificity Profiling of Pak Kinases Allows Identification of Novel Phosphorylation Sites. Journal of Biological Chemistry, 2007, 282, 15667-15678.	3.4	116
136	$\hat{l}\pm6\hat{l}^24$ integrin activates Rac-dependent p21-activated kinase 1 to drive NF- \hat{l}^2B -dependent resistance to apoptosis in 3D mammary acini. Journal of Cell Science, 2007, 120, 3700-3712.	2.0	75
137	The kinase-inhibitory domain of p21-activated kinase 1 (PAK1) inhibits cell cycle progression independent of PAK1 kinase activity. Oncogene, 2007, 26, 1820-1828.	5.9	43
138	Regulation of protein tyrosine phosphatase 1B by sumoylation. Nature Cell Biology, 2007, 9, 80-85.	10.3	100
139	A Dimeric Kinase Assembly Underlying Autophosphorylation in the p21 Activated Kinases. Journal of Molecular Biology, 2006, 361, 312-326.	4.2	82
140	Src transforms in a Cool way. Nature Cell Biology, 2006, 8, 905-907.	10.3	3
141	Targeting and activation of Rac1 are mediated by the exchange factor \hat{l}^2 -Pix. Journal of Cell Biology, 2006, 172, 759-769.	5.2	221
142	Nucleocytoplasmic Shuttling of Pak5 Regulates Its Antiapoptotic Properties. Molecular and Cellular Biology, 2006, 26, 3215-3230.	2.3	62
143	Visinin-like protein-1 is a potent inhibitor of cell adhesion and migration in squamous carcinoma cells. Oncogene, 2005, 24, 2307-2316.	5.9	34
144	Crystal Structure of a Complex between Protein Tyrosine Phosphatase 1B and the Insulin Receptor Tyrosine Kinase. Structure, 2005, 13, 1643-1651.	3.3	43

#	Article	IF	CITATIONS
145	Rho-GTPases: New members, new pathways. Journal of Cellular Biochemistry, 2005, 94, 225-231.	2.6	50
146	Role of Group A p21-activated Kinases in Activation of Extracellular-regulated Kinase by Growth Factors. Journal of Biological Chemistry, 2005, 280, 36609-36615.	3.4	118
147	Spatially Distinct Binding of Cdc42 to PAK1 and N-WASP in Breast Carcinoma Cells. Molecular and Cellular Biology, 2005, 25, 1680-1695.	2.3	90
148	Essential role of CIB1 in regulating PAK1 activation and cell migration. Journal of Cell Biology, 2005, 170, 465-476.	5.2	72
149	Regulation of the catalytic activity of PTP1B: Roles for cell adhesion, tyrosine residue 66, and proline residues 309 and 310. Experimental Cell Research, 2005, 311, 294-306.	2.6	7
150	Pak GITs to Aurora-A. Developmental Cell, 2005, 9, 573-574.	7.0	12
151	Production and use of a cell permeable inhibitor of group A Paks (TAT-PID) to analyze signal transduction. Methods, 2005, 37, 203-207.	3.8	8
152	The genetics of Pak. Journal of Cell Science, 2004, 117, 4343-4354.	2.0	215
153	The Cross-Rho'ds of Cell-Cell Adhesion. Journal of Biological Chemistry, 2004, 279, 35123-35126.	3.4	19
154	Vav1 Transduces T Cell Receptor Signals to the Activation of the Ras/ERK Pathway via LAT, Sos, and RasGRP1. Journal of Biological Chemistry, 2004, 279, 18239-18246.	3.4	82
155	Analysis and manipulation of intracellular signaling cascades. Methods, 2004, 32, 347-348.	3.8	1
156	Pak1 and PIX regulate contact inhibition during epithelial wound healing. EMBO Journal, 2003, 22, 4155-4165.	7.8	66
157	<i>NF2</i> : The wizardry of merlin. Genes Chromosomes and Cancer, 2003, 38, 389-399.	2.8	67
158	Apoptotic Phosphorylation of Histone H2B Is Mediated by Mammalian Sterile Twenty Kinase. Cell, 2003, 113, 507-517.	28.9	441
159	Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin. Neuron, 2003, 37, 263-274.	8.1	418
160	p38 Mitogen-Activated Protein Kinase Mediates Cell Death and p21-Activated Kinase Mediates Cell Survival during Chemotherapeutic Drug-induced Mitotic Arrest. Molecular Biology of the Cell, 2003, 14, 2071-2087.	2.1	177
161	Protein-tyrosine Phosphatase 1B Mediates the Effects of Insulin on the Actin Cytoskeleton in Immortalized Fibroblasts. Journal of Biological Chemistry, 2003, 278, 40607-40611.	3.4	36
162	p21-Activated Kinase 5 (Pak5) Localizes to Mitochondria and Inhibits Apoptosis by Phosphorylating BAD. Molecular and Cellular Biology, 2003, 23, 5526-5539.	2.3	146

#	Article	IF	CITATIONS
163	Protein-Tyrosine Phosphatase 1B as a Potential Drug Target for Obesity. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2003, 3, 299-304.	1.8	23
164	AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Research, 2003, 63, 6802-8.	0.9	62
165	p21-activated Kinase Links Rac/Cdc42 Signaling to Merlin. Journal of Biological Chemistry, 2002, 277, 883-886.	3.4	236
166	Detection of Peptides, Proteins, and Drugs That Selectively Interact With Protein Targets. Genome Research, 2002, 12, 1785-1791.	5 . 5	34
167	Interaction of protein tyrosine phosphatase (PTP) 1B with its substrates is influenced by two distinct binding domains. Biochemical Journal, 2002, 364, 377-383.	3.7	28
168	The evolutionary history of effectors downstream of Cdc42 and Rac. Genome Biology, 2002, 3, reviews0002.1.	9.6	75
169	p21-Activated kinases: three more join the Pak. International Journal of Biochemistry and Cell Biology, 2002, 34, 713-717.	2.8	330
170	Cell Cycle-Regulated Phosphorylation of p21-Activated Kinase 1. Current Biology, 2002, 12, 1227-1232.	3.9	80
171	Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration. Oncogene, 2002, 21, 8470-8476.	5.9	134
172	p21â€activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Reports, 2002, 3, 767-773.	4.5	134
173	Evidence for a Role of Mixed Lineage Kinases in Neuronal Apoptosis. Journal of Neuroscience, 2001, 21, 4949-4957.	3.6	83
174	Two-hybrid dual bait system to discriminate specificity of protein interactions in small GTPases. Methods in Enzymology, 2001, 332, 277-300.	1.0	13
175	Analysis of Small GTPase Signaling Pathways Using p21-activated Kinase Mutants That Selectively Couple to Cdc42. Journal of Biological Chemistry, 2001, 276, 40606-40613.	3.4	29
176	Regulation of Macropinocytosis by p21-activated Kinase-1. Molecular Biology of the Cell, 2000, 11, 3341-3352.	2.1	267
177	Plant GTPases: the Rhos in bloom. Trends in Cell Biology, 2000, 10, 141-146.	7.9	88
178	Regulation of Microfilament Reorganization and Invasiveness of Breast Cancer Cells by Kinase Dead p21-activated Kinase-1. Journal of Biological Chemistry, 2000, 275, 12041-12050.	3.4	153
179	Lentivirus Nef Specifically Activates Pak2. Journal of Virology, 2000, 74, 11081-11087.	3.4	70
180	Down-regulation of Insulin Signaling by Protein-tyrosine Phosphatase 1B Is Mediated by an N-terminal Binding Region. Journal of Biological Chemistry, 2000, 275, 23642-23647.	3.4	82

#	Article	IF	CITATIONS
181	Temporal and Spatial Distribution of Activated Pak1 in Fibroblasts. Journal of Cell Biology, 2000, 151, 1449-1458.	5.2	142
182	Regulatable Expression of p21-activated Kinase-1 Promotes Anchorage-independent Growth and Abnormal Organization of Mitotic Spindles in Human Epithelial Breast Cancer Cells. Journal of Biological Chemistry, 2000, 275, 36238-36244.	3.4	226
183	p21-Activated Kinase 1 (Pak1) Regulates Cell Motility in Mammalian Fibroblasts. Journal of Cell Biology, 1999, 145, 837-849.	5.2	357
184	Close encounters of the LIM-kinase. Nature Cell Biology, 1999, 1, E115-E117.	10.3	15
185	Protein tyrosine phosphatases as negative regulators of mitogenic signaling. , 1999, 180, 173-181.		63
186	Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Current Biology, 1998, 8, 173-S2.	3.9	126
187	Regulation of PAK Activation and the T Cell Cytoskeleton by the Linker Protein SLP-76. Immunity, 1998, 9, 607-616.	14.3	262
188	Heregulin Regulates Cytoskeletal Reorganization and Cell Migration through the p21-activated Kinase-1 via Phosphatidylinositol-3 Kinase. Journal of Biological Chemistry, 1998, 273, 28238-28246.	3.4	254
189	Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO Journal, 1998, 17, 2224-2234.	7.8	340
190	Interaction of Rac1 with GTPase-activating Proteins and Putative Effectors. Journal of Biological Chemistry, 1998, 273, 8776-8782.	3.4	62
191	Characterization of Pak2p, a Pleckstrin Homology Domain-containing, p21-activated Protein Kinase from Fission Yeast. Journal of Biological Chemistry, 1998, 273, 18490-18498.	3.4	46
192	Transformation Suppression by Protein Tyrosine Phosphatase 1B Requires a Functional SH3 Ligand. Molecular and Cellular Biology, 1998, 18, 250-259.	2.3	68
193	Protein-Tyrosine Phosphatase 1B Complexes with the Insulin Receptor in Vivo and Is Tyrosine-phosphorylated in the Presence of Insulin. Journal of Biological Chemistry, 1997, 272, 1639-1645.	3.4	229
194	Determinants of Patient Adherence to Consultative Comprehensive Geriatric Assessment Recommendations. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1997, 52A, M44-M51.	3.6	18
195	Kinase-Deficient Pak1 Mutants Inhibit Ras Transformation of Rat-1 Fibroblasts. Molecular and Cellular Biology, 1997, 17, 4454-4464.	2.3	188
196	Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochemical Journal, 1997, 327, 139-145.	3.7	163
197	Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Current Biology, 1997, 7, 202-210.	3.9	630
198	Emerging from the Pak: the p21-activated protein kinase family. Trends in Cell Biology, 1997, 7, 162-167.	7.9	283

#	Article	IF	Citations
199	Identification of a mouse p21cdc42/Rac activated kinase Journal of Biological Chemistry, 1996, 271, 1250.	3.4	2
200	Direct Binding of the Proline-rich Region of Protein Tyrosine Phosphatase 1B to the Src Homology 3 Domain of p130Cas. Journal of Biological Chemistry, 1996, 271, 31290-31295.	3.4	243
201	The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. Journal of Biological Chemistry, 1996, 271, 20997-21000.	3.4	247
202	The Ste20-like Protein Kinase, Mst1, Dimerizes and Contains an Inhibitory Domain. Journal of Biological Chemistry, 1996, 271, 21049-21053.	3.4	191
203	[12] Polymerase chain reaction cloning of related genes. Methods in Enzymology, 1995, 254, 184-195.	1.0	1
204	Fission yeast pak1+ encodes a protein kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating EMBO Journal, 1995, 14, 5908-5919.	7.8	139
205	Nerve Growth Factor Stimulates Tyrosine Phosphorylation and Activation of Src Homology-containing Protein-tyrosine Phosphatase 1 in PC12 Cells. Journal of Biological Chemistry, 1995, 270, 25629-25633.	3.4	50
206	Identification of a Mouse p21Cdc42/Rac Activated Kinase. Journal of Biological Chemistry, 1995, 270, 22731-22737.	3.4	383
207	Cloning and Characterization of a Human Protein Kinase with Homology to Ste20. Journal of Biological Chemistry, 1995, 270, 21695-21700.	3.4	174
208	Regulation of human leukocyte p21-activated kinases through G proteincoupled receptors. Science, 1995, 269, 221-223.	12.6	399
209	Rho Family GTPases Regulate p38 Mitogen-activated Protein Kinase through the Downstream Mediator Pak1. Journal of Biological Chemistry, 1995, 270, 23934-23936.	3.4	695
210	Epitope-tag vectors for eukaryotic protein production. Gene, 1995, 152, 187-189.	2.2	75
211	Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene, 1995, 167, 303-306.	2.2	124
212	Fission yeast pak $1+$ encodes a protein kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating. EMBO Journal, 1995, 14, 5908-19.	7.8	64
213	Tpl-2 acts in concert with Ras and Raf-1 to activate mitogen-activated protein kinase Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9755-9759.	7.1	110
214	The fission yeast genes pyp1+ and pyp2+ encode protein tyrosine phosphatases that negatively regulate mitosis Molecular and Cellular Biology, 1992, 12, 5571-5580.	2.3	53
215	The Fission Yeast Genes <i>pyp1⁺</i> and <i>pyp2⁺</i> Encode Protein Tyrosine Phosphatases That Negatively Regulate Mitosis. Molecular and Cellular Biology, 1992, 12, 5571-5580.	2.3	24
216	A fission-yeast gene encoding a protein with features of protein-tyrosine-phosphatases Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3455-3459.	7.1	49

#	Article	IF	CITATIONS
217	Cloning of a cDNA for a major human protein-tyrosine-phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2735-2739.	7.1	209
218	Long-term culture and passage of human fetal liver cells that synthesize albumin. In Vitro, 1985, 21, 216-220.	1.2	31
219	A major phosphotyrosyl-protein phosphatase from bovine heart is associated with a low-molecular-weight acid phosphatase. Archives of Biochemistry and Biophysics, 1985, 240, 135-145.	3.0	105
220	A phosphotyrosyl-protein phosphatase activity associated with acid phosphatase from human prostate gland. FEBS Journal, 1984, 138, 45-51.	0.2	108
221	Characterization of phosphotyrosyl-protein phosphatase activity associated with calcineurin. Biochemical and Biophysical Research Communications, 1984, 121, 141-148.	2.1	55
222	Multiple forms of phosphotyrosyl- and phosphoseryl-protein phosphatase from cardiac muscle: Partial purification and characterization of an EDTA-stimulated phosphotyrosyl-protein phosphatase. Archives of Biochemistry and Biophysics, 1983, 226, 517-530.	3.0	45
223	Characterization of a phosphotyrosyl protein phosphatase activity associated with a phosphoseryl protein phosphatase of Mr = 95,000 from bovine heart Journal of Biological Chemistry, 1983, 258, 7852-7857.	3.4	73
224	Characterization of a phosphotyrosyl protein phosphatase activity associated with a phosphoseryl protein phosphatase of Mr = 95,000 from bovine heart. Journal of Biological Chemistry, 1983, 258, 7852-7.	3.4	59
225	Ptp1b. The AFCS-nature Molecule Pages, 0, , .	0.2	11
226	Pak5. The AFCS-nature Molecule Pages, 0, , .	0.2	11
227	Mst1. The AFCS-nature Molecule Pages, 0, , .	0.2	O