
Hongrui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4694268/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Identifying the drivers of changes in embodied food–energy–water in the Bohai mega-urban region, China: A perspective of final demands. Environmental Science and Pollution Research, 2022, , 1.	5.3	1
2	A New Estimation Method for Copula Parameters for Multivariate Hydrological Frequency Analysis With Small Sample Sizes. Water Resources Management, 2022, 36, 1141-1157.	3.9	2
3	Coupling Variable Fuzzy Sets and Gini Coefficient to Evaluate the Spatial Equilibrium of Water Resources. Water Resources, 2022, 49, 292-300.	0.9	10
4	Encounter risk prediction of rich-poor precipitation using a combined copula. Theoretical and Applied Climatology, 2022, 149, 1057-1067.	2.8	2
5	Model-based temporal evolution and spatial equilibrium analysis of green development in China's Yangtze River Economic Belt from 2009 to 2018. Ecological Indicators, 2022, 141, 109071.	6.3	14
6	Water and energy circulation characteristics and their impacts on water stress at the provincial level in China. Stochastic Environmental Research and Risk Assessment, 2021, 35, 147-164.	4.0	4
7	Prediction of water shortage loss in situations with small samples based on an improved Gumbel copula. Journal of Earth System Science, 2021, 130, 1.	1.3	3
8	Variation in the dependence structure between runoff and sediment discharge using an improved copula. Theoretical and Applied Climatology, 2021, 145, 285-293.	2.8	7
9	Large-scale monitoring of soil moisture using Temperature Vegetation Quantitative Index (TVQI) and exponential filtering: A case study in Beijing. Agricultural Water Management, 2021, 252, 106896.	5.6	6
10	Risk Assessment of Water Resources and Energy Security Based on the Cloud Model: A Case Study of China in 2020. Water (Switzerland), 2021, 13, 1823.	2.7	7
11	Meeting the challenges of food-energy-water systems in typical mega-urban regions from final demands and supply chains: A case study of the Bohai mega-urban region, China. Journal of Cleaner Production, 2021, 320, 128663.	9.3	5
12	A water shortage risk predicting model through estimating mutual information values between risk and risk factors. Environmental Earth Sciences, 2021, 80, 1.	2.7	1
13	A New Parameter Estimation Method for a Logistic Regression Model of Water Shortage Risk in the Case of Small Sample Numbers. Mathematical Geosciences, 2020, 52, 929-944.	2.4	3
14	An improved method for predicting water shortage risk in the case of insufficient data and its application in Tianjin, China. Journal of Earth System Science, 2020, 129, 1.	1.3	5
15	Quantitative Analysis of the Effects of Natural and Human Factors on a Hydrological System in Zhangweinan Canal Basin. Water (Switzerland), 2020, 12, 1864.	2.7	5
16	Impacts of Climatic Change on Reference Crop Evapotranspiration across Different Climatic Zones of Ningxia at Multi-Time Scales from 1957 to 2018. Advances in Meteorology, 2020, 2020, 1-23.	1.6	2
17	An entropic model for the rock water absorption process. Stochastic Environmental Research and Risk Assessment, 2020, 34, 1871-1886.	4.0	5
18	Problems and Countermeasures of River Management in the Process of Rapid Urbanization in China. Water (Switzerland), 2020, 12, 2260.	2.7	9

Hongrui Wang

#	Article	IF	CITATIONS
19	Changes in spatiotemporal drought characteristics over northeast China from 1960 to 2018 based on the modified nested Copula model. Science of the Total Environment, 2020, 739, 140328.	8.0	34
20	Effects of urbanization on food-energy-water systems in mega-urban regions: a case study of the Bohai MUR, China. Environmental Research Letters, 2020, 15, 044014.	5.2	19
21	Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation. Agricultural Water Management, 2020, 231, 105958.	5.6	39
22	Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory. Entropy, 2019, 21, 55.	2.2	11
23	Comprehensive Utilization of Seawater in China: A Description of the Present Situation, Restrictive Factors and Potential Countermeasures. Water (Switzerland), 2019, 11, 397.	2.7	8
24	Comparison of Conventional Deterministic and Entropy-Based Methods for Predicting Sediment Concentration in Debris Flow. Water (Switzerland), 2019, 11, 439.	2.7	5
25	Seawater desalination in China: an overview. Journal of Water Reuse and Desalination, 2019, 9, 115-132.	2.3	32
26	Decomposition analysis of water utilization in the Beijing-Tianjin-Hebei region between 2003 and 2016. Water Science and Technology: Water Supply, 2019, 19, 626-634.	2.1	1
27	A new nonlinear risk assessment model based on an improved projection pursuit. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1465-1478.	4.0	7
28	An integrated approach for water scarcity evaluation—a case study of Yunnan, China. Environment, Development and Sustainability, 2018, 20, 109-127.	5.0	9
29	Modelling bivariate extreme precipitation distribution for dataâ€scarce regions using Gumbel–Hougaard copula with maximum entropy estimation. Hydrological Processes, 2018, 32, 212-227.	2.6	33
30	Comprehensive assessment of drought from 1960 to 2013 in China based on different perspectives. Theoretical and Applied Climatology, 2018, 134, 585-594.	2.8	3
31	Quantifying the Relationship between Drought and Water Scarcity Using Copulas: Case Study of Beijing–Tianjin–Hebei Metropolitan Areas in China. Water (Switzerland), 2018, 10, 1622.	2.7	14
32	Optimizing Policy for Balanced Industrial Profit and Water Pollution Control under a Complex Socioecological System Using a Multiagent-Based Model. Water (Switzerland), 2018, 10, 1139.	2.7	8
33	Exploration of Use of Copulas in Analysing the Relationship between Precipitation and Meteorological Drought in Beijing, China. Advances in Meteorology, 2017, 2017, 1-11.	1.6	15
34	A new multiple integral model for water shortage risk assessment and its application in Beijing, China. Natural Hazards, 2016, 80, 43-67.	3.4	15
35	Evaluation Criteria and Model for Risk Between Water Supply and Water Demand and its Application in Beijing. Water Resources Management, 2014, 28, 4433-4447.	3.9	25
36	Uncertainty analysis of hydrological processes based on ARMA-GARCH model. Science China Technological Sciences, 2012, 55, 2321-2331.	4.0	15

Hongrui Wang

#	Article	IF	CITATIONS
37	Bayesian networks precipitation model based on hidden Markov analysis and its application. Science China Technological Sciences, 2010, 53, 539-547.	4.0	6
38	Crytic period analysis model of hydrological process and its application. Hydrological Processes, 2009, 23, 1834-1843.	2.6	8
39	Development and application of ergodicity model with FRCM and FLAR for hydrological process. Science in China Series D: Earth Sciences, 2009, 52, 379-386.	0.9	5
40	An input–output analysis of virtual water uses of the three economic sectors in Beijing. Water International, 2009, 34, 451-467.	1.0	39
41	Ecological compensation mechanism for urban green land and its application in Shanghai, China. Frontiers of Environmental Science and Engineering in China, 2007, 1, 320-324.	0.8	3
42	Sustainable use of water resources in agriculture in Beijing: problems and countermeasures. Water Policy, 2005, 7, 345-357.	1.5	25
43	Study on drought events in China based on time-varying nested Archimedean-copula function. Water Science and Technology: Water Supply, 0, , .	2.1	1