List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/469389/publications.pdf Version: 2024-02-01

		117625	138484
143	4,549	34	58
papers	citations	h-index	g-index
157	157	157	3494
all docs	docs citations	times ranked	citing authors

OLCA LAVRIK

#	Article	IF	CITATIONS
1	Role of YB-1 in Regulation of Poly(ADP-Ribosylation) Catalyzed by Poly(ADP-Ribose) Polymerases. Biochemistry (Moscow), 2022, 87, S32-S47.	1.5	0
2	Inhibition of the DNA repair enzyme TDP1 by the resin acid derivatives as a new way to increase the efficiency of glioblastoma chemotherapy. AIP Conference Proceedings, 2022, , .	0.4	0
3	Study of Interaction of the PARP Family DNA-Dependent Proteins with Nucleosomes Containing DNA Intermediates of the Initial Stages of BER Process. Biochemistry (Moscow), 2022, 87, 331-345.	1.5	2
4	New Deoxycholic Acid Derived Tyrosyl-DNA Phosphodiesterase 1 Inhibitors Also Inhibit Tyrosyl-DNA Phosphodiesterase 2. Molecules, 2022, 27, 72.	3.8	8
5	In Vitro and In Silico Studies of Human Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) Inhibition by Stereoisomeric Forms of Lipophilic Nucleosides: The Role of Carbohydrate Stereochemistry in Ligand-Enzyme Interactions. Molecules, 2022, 27, 2433.	3.8	2
6	Adamantane-Monoterpenoid Conjugates Linked via Heterocyclic Linkers Enhance the Cytotoxic Effect of Topotecan. Molecules, 2022, 27, 3374.	3.8	11
7	Dehydroabietylamine-based thiazolidin-4-ones and 2-thioxoimidazolidin-4-ones as novel tyrosyl-DNA phosphodiesterase 1 inhibitors. Molecular Diversity, 2021, 25, 2389-2397.	3.9	5
8	Deoxycholic acid as a molecular scaffold for tyrosyl-DNA phosphodiesterase 1 inhibition: A synthesis, structure–activity relationship and molecular modeling study. Steroids, 2021, 165, 108771.	1.8	18
9	Rational Design of Albumin Theranostic Conjugates for Gold Nanoparticles Anticancer Drugs: Where the Seed Meets the Soil?. Biomedicines, 2021, 9, 74.	3.2	10
10	The Interaction Efficiency of XPD-p44 With Bulky DNA Damages Depends on the Structure of the Damage. Frontiers in Cell and Developmental Biology, 2021, 9, 617160.	3.7	4
11	Discovery of Novel Sultone Fused Berberine Derivatives as Promising Tdp1 Inhibitors. Molecules, 2021, 26, 1945.	3.8	6
12	Functional Roles of PARP2 in Assembling Protein–Protein Complexes Involved in Base Excision DNA Repair. International Journal of Molecular Sciences, 2021, 22, 4679.	4.1	9
13	Design, Synthesis, and Molecular Docking Study of New Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Combining Resin Acids and Adamantane Moieties. Pharmaceuticals, 2021, 14, 422.	3.8	10
14	PARP1 Regulates the Biogenesis and Activity of Telomerase Complex Through Modification of H/ACA-Proteins. Frontiers in Cell and Developmental Biology, 2021, 9, 621134.	3.7	12
15	Novel Tdp1 Inhibitors Based on Adamantane Connected with Monoterpene Moieties via Heterocyclic Fragments. Molecules, 2021, 26, 3128.	3.8	15
16	Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities. International Journal of Molecular Sciences, 2021, 22, 6220.	4.1	18
17	New Hybrid Compounds Combining Fragments of Usnic Acid and Monoterpenoids for Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibition. Biomolecules, 2021, 11, 973.	4.0	16
18	New Hybrid Compounds Combining Fragments of Usnic Acid and Thioether Are Inhibitors of Human Enzymes TDP1, TDP2 and PARP1. International Journal of Molecular Sciences, 2021, 22, 11336.	4.1	14

#	Article	IF	CITATIONS
19	Dual function of HPF1 in the modulation of PARP1 and PARP2 activities. Communications Biology, 2021, 4, 1259.	4.4	15
20	Human apurinic/apyrimidinic endonuclease 1 is modified inÂvitro by poly(ADP-ribose) polymerase 1 under control of the structure of damaged DNA. Biochimie, 2020, 168, 144-155.	2.6	23
21	Inhibition of Transcription Induces Phosphorylation of YB-1 at Ser102 and Its Accumulation in the Nucleus. Cells, 2020, 9, 104.	4.1	23
22	Promising New Inhibitors of Tyrosyl-DNA Phosphodiesterase I (Tdp 1) Combining 4-Arylcoumarin and Monoterpenoid Moieties as Components of Complex Antitumor Therapy. International Journal of Molecular Sciences, 2020, 21, 126.	4.1	32
23	Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA. International Journal of Molecular Sciences, 2020, 21, 7020.	4.1	27
24	The First Berberine-Based Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), an Important DNA Repair Enzyme. International Journal of Molecular Sciences, 2020, 21, 7162.	4.1	13
25	Strand Displacement Activity of PrimPol. International Journal of Molecular Sciences, 2020, 21, 9027.	4.1	6
26	Design, Synthesis, and Biological Investigation of Novel Classes of 3-Carene-Derived Potent Inhibitors of TDP1. Molecules, 2020, 25, 3496.	3.8	22
27	Usnic Acid Conjugates with Monoterpenoids as Potent Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Journal of Natural Products, 2020, 83, 2320-2329.	3.0	21
28	PARPs' impact on base excision DNA repair. DNA Repair, 2020, 93, 102911.	2.8	25
29	Regulation of Poly(ADP-Ribose) Polymerase 1 Activity by Y-Box-Binding Protein 1. Biomolecules, 2020, 10, 1325.	4.0	21
30	Inhibition of Tyrosyl-DNA Phosphodiesterase 1 by Lipophilic Pyrimidine Nucleosides. Molecules, 2020, 25, 3694.	3.8	7
31	Human Tyrosyl-DNA Phosphodiesterase 1 Possesses Transphosphooligonucleotidation Activity With Primary Alcohols. Frontiers in Cell and Developmental Biology, 2020, 8, 604732.	3.7	8
32	Functional Role of N-Terminal Extension of Human AP Endonuclease 1 In Coordination of Base Excision DNA Repair via Protein–Protein Interactions. International Journal of Molecular Sciences, 2020, 21, 3122.	4.1	12
33	Non-canonical interaction of DNA repair proteins with intact and cleaved AP sites. DNA Repair, 2020, 90, 102847.	2.8	11
34	Molecular Mechanisms of PARP-1 Inhibitor 7-Methylguanine. International Journal of Molecular Sciences, 2020, 21, 2159.	4.1	20
35	Photoreactive DNA as a Tool to Study Replication Protein A Functioning in DNA Replication and Repair. Photochemistry and Photobiology, 2020, 96, 440-449.	2.5	4
36	Design, Synthesis and Molecular Modeling Study of Conjugates of ADP and Morpholino Nucleosides as A Novel Class of Inhibitors of PARP-1, PARP-2 and PARP-3. International Journal of Molecular Sciences, 2020, 21, 214.	4.1	10

#	Article	IF	CITATIONS
37	Apurinic/Apyrimidinic Endonuclease 1 and Tyrosyl-DNA Phosphodiesterase 1 Prevent Suicidal Covalent DNA-Protein Crosslink at Apurinic/Apyrimidinic Site. Frontiers in Cell and Developmental Biology, 2020, 8, 617301.	3.7	7
38	Inhibitory Effect of New Semisynthetic Usnic Acid Derivatives on Human Tyrosyl-DNA Phosphodiesterase 1. Planta Medica, 2019, 85, 103-111.	1.3	13
39	Dehydroabietylamine Ureas and Thioureas as Tyrosyl-DNA Phosphodiesterase 1 Inhibitors That Enhance the Antitumor Effect of Temozolomide on Glioblastoma Cells. Journal of Natural Products, 2019, 82, 2443-2450.	3.0	16
40	The Development of Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Combination of Monoterpene and Adamantine Moieties via Amide or Thioamide Bridges. Applied Sciences (Switzerland), 2019, 9, 2767.	2.5	18
41	Double-Stranded DNA Fragments Bearing Unrepairable Lesions and Their Internalization into Mouse Krebs-2 Carcinoma Cells. Nucleic Acid Therapeutics, 2019, 29, 278-290.	3.6	4
42	New Hydrazinothiazole Derivatives of Usnic Acid as Potent Tdp1 Inhibitors. Molecules, 2019, 24, 3711.	3.8	34
43	A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates. Journal of Molecular Biology, 2019, 431, 2655-2673.	4.2	34
44	PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA. Cell Reports, 2019, 27, 1809-1821.e5.	6.4	144
45	Dual DNA topoisomerase 1 and tyrosylâ€DNA phosphodiesterase 1 inhibition for improved anticancer activity. Medicinal Research Reviews, 2019, 39, 1427-1441.	10.5	32
46	Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Research, 2019, 47, 3811-3827.	14.5	275
47	Dynamic light scattering study of base excision DNA repair proteins and their complexes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 297-305.	2.3	24
48	Poly(ADP-ribosyl)ation and DNA repair synthesis in the extracts of naked mole rat, mouse, and human cells. Aging, 2019, 11, 2852-2873.	3.1	6
49	The Development of Tyrosyl-DNA Phosphodyesterase 1 (TDP1) Inhibitors Based on the Amines Combining Aromatic/Heteroaromatic and Monoterpenoid Moieties. Letters in Drug Design and Discovery, 2019, 16, 597-605.	0.7	10
50	Novel Inhibitors of DNA Repair Enzyme TDP1 Combining Monoterpenoid and Adamantane Fragments. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 463-472.	1.7	17
51	Aminoadamantanes containing monoterpene-derived fragments as potent tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorganic Chemistry, 2018, 76, 392-399.	4.1	35
52	Structural basis for the recognition and processing of DNA containing bulky lesions by the mammalian nucleotide excision repair system. DNA Repair, 2018, 61, 86-98.	2.8	7
53	Comprehensive analysis of telomerase inhibition by gallotannin. Oncotarget, 2018, 9, 18712-18719.	1.8	9
54	Replication protein A as a modulator of the poly(ADP-ribose)polymerase 1 activity. DNA Repair, 2018, 72, 28-38.	2.8	13

#	Article	IF	CITATIONS
55	A Novel Class of Tyrosyl-DNA Phosphodiesterase 1 Inhibitors That Contains the Octahydro-2H-chromen-4-ol Scaffold. Molecules, 2018, 23, 2468.	3.8	28
56	Novel group of tyrosyl-DNA-phosphodiesterase 1 inhibitors based on disaccharide nucleosides as drug prototypes for anti-cancer therapy. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1415-1429.	5.2	18
57	Synthesis and evaluation of aryliden- and hetarylidenfuranone derivatives of usnic acid as highly potent Tdp1 inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 4470-4480.	3.0	26
58	In vitro lesion bypass by human PrimPol. DNA Repair, 2018, 70, 18-24.	2.8	26
59	Novel Semisynthetic Derivatives of Bile Acids as Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Molecules, 2018, 23, 679.	3.8	24
60	Unusual interaction of human apurinic/apyrimidinic endonuclease 1 (APE1) with abasic sites via the Schiff-base-dependent mechanism. Biochimie, 2018, 150, 88-99.	2.6	11
61	RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair. PLoS ONE, 2018, 13, e0190782.	2.5	17
62	Naked mole rat cells display more efficient excision repair than mouse cells. Aging, 2018, 10, 1454-1473.	3.1	38
63	The multifunctional protein YB-1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Oncotarget, 2018, 9, 23349-23365.	1.8	29
64	Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorganic and Medicinal Chemistry, 2017, 25, 2531-2544.	3.0	44
65	Processing of the abasic sites clustered with the benzo[a]pyrene adducts by the base excision repair enzymes. DNA Repair, 2017, 50, 43-53.	2.8	5
66	The genome-wide transcription response to telomerase deficiency in the thermotolerant yeast Hansenula polymorpha DL-1. BMC Genomics, 2017, 18, 492.	2.8	3
67	A versatile strategy for the design and synthesis of novel ADP conjugates and their evaluation as potential poly(ADP-ribose) polymerase 1 inhibitors. Molecular Diversity, 2017, 21, 101-113.	3.9	4
68	Pre-steady state kinetics of DNA binding and abasic site hydrolysis by tyrosyl-DNA phosphodiesterase 1. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2314-2327.	3.5	6
69	Y-box-binding protein 1 as a non-canonical factor of base excision repair. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1631-1640.	2.3	36
70	Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments <i>in vitro</i> . Nucleic Acids Research, 2016, 44, gkw675.	14.5	94
71	5′ to 3′ Unfolding Directionality of DNA Secondary Structures by Replication Protein A. Journal of Biological Chemistry, 2016, 291, 21246-21256.	3.4	37
72	New inhibitors of tyrosyl-DNA phosphodiesterase I (Tdp 1) combining 7-hydroxycoumarin and monoterpenoid moieties. Bioorganic and Medicinal Chemistry, 2016, 24, 5573-5581.	3.0	54

#	Article	IF	CITATIONS
73	Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential. Bioorganic and Medicinal Chemistry, 2016, 24, 5017-5027.	3.0	55
74	Tyrosyl-DNA Phosphodiesterase 1 Inhibitors: Usnic Acid Enamines Enhance the Cytotoxic Effect of Camptothecin. Journal of Natural Products, 2016, 79, 2961-2967.	3.0	65
75	Ku antigen displays the AP lyase activity on a certain type of duplex DNA. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1244-1252.	2.3	7
76	Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Research, 2016, 44, e60-e60.	14.5	90
77	p21CDKN1A Regulates the Binding of Poly(ADP-Ribose) Polymerase-1 to DNA Repair Intermediates. PLoS ONE, 2016, 11, e0146031.	2.5	8
78	Poly(ADP-ribose)polymerase 1 stimulates the AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1. Bioscience Reports, 2015, 35, .	2.4	11
79	Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1. Biochimie, 2015, 119, 36-44.	2.6	22
80	Inhibition of abasic site cleavage in bubble DNA by multifunctional protein YBâ€1. Journal of Molecular Recognition, 2015, 28, 117-123.	2.1	8
81	An effective two-step synthesis, fluorescent properties, antioxidant activity and cytotoxicity evaluation of benzene-fluorinated 2,2-dimethyl-2,3-dihydro-1H-quinolin-4-ones. Journal of Fluorine Chemistry, 2015, 178, 142-153.	1.7	28
82	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with apurinic/apyrimidinic sites in DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 779, 46-57.	1.0	21
83	Poly(ADP-ribose) Polymerase 1 Modulates Interaction of the Nucleotide Excision Repair Factor XPC-RAD23B with DNA via Poly(ADP-ribosyl)ation. Journal of Biological Chemistry, 2015, 290, 21811-21820.	3.4	30
84	Interaction of PARP-2 with AP site containing DNA. Biochimie, 2015, 112, 10-19.	2.6	33
85	Synthesis and biological evaluation of novel tyrosyl-DNA phosphodiesterase 1 inhibitors with a benzopentathiepine moiety. Bioorganic and Medicinal Chemistry, 2015, 23, 2044-2052.	3.0	75
86	A synthesis, in silico, in vitro and in vivo study of thieno[2,3-b]pyridine anticancer analogues. MedChemComm, 2015, 6, 1987-1997.	3.4	39
87	Quantitative characterization of protein–protein complexes involved in base excision DNA repair. Nucleic Acids Research, 2015, 43, 6009-6022.	14.5	74
88	Design of a New Fluorescent Oligonucleotide-Based Assay for a Highly Specific Real-Time Detection of Apurinic/Apyrimidinic Site Cleavage by Tyrosyl-DNA Phosphodiesterase 1. Bioconjugate Chemistry, 2015, 26, 2046-2053.	3.6	22
89	Binding polarity of RPA to telomeric sequences and influence of G-quadruplex stability. Biochimie, 2014, 103, 80-88.	2.6	37
90	Human DNA polymerases catalyze lesion bypass across benzo[a]pyrene-derived DNA adduct clustered with an abasic site. DNA Repair, 2014, 24, 1-9.	2.8	6

#	Article	IF	CITATIONS
91	Interaction of Ddc1 and RPA with single-stranded/double-stranded DNA junctions in yeast whole cell extracts: Proteolytic degradation of the large subunit of replication protein A in ddc11" strains. DNA Repair, 2014, 22, 30-40.	2.8	4
92	Disaccharide Pyrimidine Nucleosides and Their Derivatives: A Novel Group of Cell-Penetrating Inhibitors of Poly(ADP-Ribose) Polymerase 1. Nucleosides, Nucleotides and Nucleic Acids, 2013, 32, 510-528.	1.1	22
93	Comparative Analysis of Interaction of Human and Yeast DNA Damage Recognition Complexes with Damaged DNA in Nucleotide Excision Repair. Journal of Biological Chemistry, 2013, 288, 10936-10947.	3.4	29
94	The mechanism of human tyrosyl-DNA phosphodiesterase 1 in the cleavage of AP site and its synthetic analogs. DNA Repair, 2013, 12, 1037-1042.	2.8	40
95	Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie, 2013, 95, 1208-1215.	2.6	52
96	Human and yeast DNA damage recognition complexes bind with high affinity DNA structures mimicking in size transcription bubble. Journal of Molecular Recognition, 2013, 26, 653-661.	2.1	11
97	New synthetic substrates of mammalian nucleotide excision repair system. Nucleic Acids Research, 2013, 41, e123-e123.	14.5	16
98	Clustered DNA Lesions Containing 5-Formyluracil and AP Site: Repair via the BER System. PLoS ONE, 2013, 8, e68576.	2.5	20
99	Influence of Usnic Acid and its Derivatives on the Activity of Mammalian Poly(ADP-ribose)polymerase 1 and DNA Polymerase β. Medicinal Chemistry, 2012, 8, 883-893.	1.5	10
100	Tyrosyl-DNA phosphodiesterase 1 initiates repair of apurinic/apyrimidinic sites. Biochimie, 2012, 94, 1749-1753.	2.6	40
101	Effect of the multifunctional proteins RPA, YBâ€∎, and XPC repair factor on AP site cleavage by DNA glycosylase NEIL1. Journal of Molecular Recognition, 2012, 25, 224-233.	2.1	21
102	Human DNA polymerase λ catalyzes lesion bypass across benzo[a]pyrene-derived DNA adduct during base excision repair. DNA Repair, 2012, 11, 367-373.	2.8	18
103	Ddc1 checkpoint protein and DNA polymerase É> interact with nick-containing DNA repair intermediate in cell free extracts of Saccharomyces cerevisiae. DNA Repair, 2011, 10, 815-825.	2.8	10
104	AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1. FEBS Letters, 2011, 585, 683-686.	2.8	89
105	Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase β in long patch base excision repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 685, 80-89.	1.0	64
106	Photo-Cross-Linking of XPCâ^'Rad23B to Cisplatin-Damaged DNA Reveals Contacts with Both Strands of the DNA Duplex and Spans the DNA Adduct. Biochemistry, 2010, 49, 669-678.	2.5	25
107	Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Research, 2010, 38, 8083-8094.	14.5	65
108	Evidence for direct contact between the RPA3 subunit of the human replication protein A and single-stranded DNA. Nucleic Acids Research, 2009, 37, 38-46.	14.5	45

#	Article	IF	CITATIONS
109	Essential functions of the 32 kDa subunit of yeast replication protein A. Nucleic Acids Research, 2009, 37, 2313-2326.	14.5	15
110	RPA repair recognition of DNA containing pyrimidines bearing bulky adducts. Journal of Molecular Recognition, 2008, 21, 154-162.	2.1	20
111	Trapping of human DNA topoisomerase I by DNA structures mimicking intermediates of DNA repair. IUBMB Life, 2008, 60, 130-134.	3.4	21
112	Crosslinking of the NER damage recognition proteins XPC-HR23B, XPA and RPA to photoreactive probes that mimic DNA damages. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 781-789.	2.4	30
113	XRCC1 interactions with base excision repair DNA intermediates. DNA Repair, 2007, 6, 254-264.	2.8	87
114	Suppression of base excision repair reactions by apoptotic 24kDa-fragment of poly(ADP-ribose) polymerase 1 in bovine testis nuclear extract. DNA Repair, 2007, 6, 615-625.	2.8	8
115	Trapping of DNA topoisomerase I on nick-containing DNA in cell free extracts of Saccharomyces cerevisiae. DNA Repair, 2006, 5, 799-809.	2.8	21
116	Thermostable DNA polymerases can perform translesion synthesis using 8-oxoguanine and tetrahydrofuran-containing DNA templates. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 97-104.	2.3	13
117	Human replication protein A unfolds telomeric G-quadruplexes. Nucleic Acids Research, 2006, 34, 4857-4865.	14.5	163
118	Comparison of functional properties of mammalian DNA polymerase λ and DNA polymerase β in reactions of DNA synthesis related to DNA repair. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1751, 150-158.	2.3	33
119	Photoaffinity Labeling Technique for Studying DNA Replication and DNA Repair†. Current Medicinal Chemistry, 2005, 12, 641-655.	2.4	40
120	Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Research, 2005, 33, 1222-1229.	14.5	121
121	A New Highly Efficient Photoreactive Analogue of dCTP. Synthesis, Characterization, and Application in Photoaffinity Modification of DNA Binding Proteins. Bioconjugate Chemistry, 2005, 16, 215-222.	3.6	30
122	Coordinated Regulation of Replication Protein A Activities by Its Subunits p14 and p32. Journal of Biological Chemistry, 2004, 279, 35368-35376.	3.4	25
123	Human replication protein A (RPA) binds a primer-template junction in the absence of its major ssDNA-binding domains. Nucleic Acids Research, 2004, 32, 1894-1903.	14.5	39
124	AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate. DNA Repair, 2004, 3, 581-591.	2.8	82
125	Prokaryotic and Eukaryotic Tetrameric Phenylalanyl-tRNA Synthetases Display Conservation of the Binding Mode of the tRNAPheCCA Endâ€. Biochemistry, 2003, 42, 10697-10708.	2.5	13
126	AP endonuclease 1 has no biologically significant 3′→5′-exonuclease activity. Biochemical and Biophysical Research Communications, 2003, 300, 182-187.	2.1	47

#	Article	IF	CITATIONS
127	Human Replication Protein A. Journal of Biological Chemistry, 2003, 278, 17515-17524.	3.4	39
128	Photoaffinity labeling of proteins in bovine testis nuclear extract. Biochemical and Biophysical Research Communications, 2002, 297, 714-721.	2.1	18
129	Localization of the large subunit of replication factor C near the 5? end of DNA primers. Journal of Molecular Recognition, 2001, 14, 239-244.	2.1	9
130	Determination of tRNAPhe nucleotides contacting the subunits of Thermus thermophilus phenylalanyl-tRNA synthetase by photoaffinity crosslinking. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1518, 226-236.	2.4	14
131	Photoaffinity Labeling of Mouse Fibroblast Enzymes by a Base Excision Repair Intermediate. Journal of Biological Chemistry, 2001, 276, 25541-25548.	3.4	174
132	DNA Polymerase β-mediated Long Patch Base Excision Repair. Journal of Biological Chemistry, 2001, 276, 32411-32414.	3.4	177
133	Synthesis of Base-Substituted dUTP Analogues Carrying a Photoreactive Group and Their Application to Study Human Replication Protein A. Bioconjugate Chemistry, 2000, 11, 445-451.	3.6	21
134	High affinity interaction of HIV-1 integrase with specific and non-specific single-stranded short oligonucleotides. FEBS Letters, 1999, 455, 154-158.	2.8	45
135	Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue. Journal of Molecular Biology, 1999, 287, 555-568.	4.2	69
136	Covalent complex of phenylalanyl-tRNA synthetase with 4-thiouridine-substituted tRNAPhe gene transcript retains aminoacylation activity1. FEBS Letters, 1998, 427, 1-4.	2.8	5
137	The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe. Structure, 1997, 5, 59-68.	3.3	188
138	dNTP Binding to HIV-1 Reverse Transcriptase and Mammalian DNA Polymerase β as Revealed by Affinity Labeling with a Photoreactive dNTP Analog. Journal of Biological Chemistry, 1996, 271, 21891-21897.	3.4	31
139	Recognition of tRNAPhe by Phenylalanyl-tRNA Synthetase of Thermus Thermophilus. FEBS Journal, 1995, 234, 897-902.	0.2	14
140	Synthesis and Characterization of (d)NTP Derivatives Substituted with Residues of Different Photoreagents. Bioconjugate Chemistry, 1995, 6, 352-360.	3.6	47
141	Three-dimensional structure of phenylalanyl-transfer RNA synthetase from Thermus thermophilus HB8 at 0.6-nm resolution. FEBS Journal, 1992, 208, 411-417.	0.2	9
142	Coordination of DNA Base Excision Repair by Protein-Protein Interactions. , 0, , .		5
143	The C-Terminal Domain of Y-Box Binding Protein 1 Exhibits Structure-Specific Binding to Poly(ADP-Ribose), Which Regulates PARP1 Activity. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	5