Chris Q Doe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/469353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From temporal patterning to neuronal connectivity in Drosophila type I neuroblast lineages. Seminars in Cell and Developmental Biology, 2023, 142, 4-12.	5.0	10
2	Hunchback activates Bicoid in Pair1 neurons to regulate synapse number and locomotor circuit function. Current Biology, 2022, 32, 2430-2441.e3.	3.9	4
3	Transcriptional profiling from whole embryos to single neuroblast lineages in Drosophila. Developmental Biology, 2022, 489, 21-33.	2.0	13
4	Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila. Neuron, 2021, 109, 105-122.e7.	8.1	36
5	Establishment and Maintenance of Neural Circuit Architecture. Journal of Neuroscience, 2021, 41, 1119-1129.	3.6	14
6	Astrocytes close a motor circuit critical period. Nature, 2021, 592, 414-420.	27.8	49
7	A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. ELife, 2021, 10, .	6.0	35
8	A locomotor neural circuit persists and functions similarly in larvae and adult Drosophila. ELife, 2021, 10, .	6.0	20
9	Mechanosensory input during circuit formation shapes Drosophila motor behavior through patterned spontaneous network activity. Current Biology, 2021, 31, 5341-5349.e4.	3.9	14
10	The role of astrocyteâ€mediated plasticity in neural circuit development and function. Neural Development, 2021, 16, 1.	2.4	78
11	A novel temporal identity window generates alternating Eve+/Nkx6+ motor neuron subtypes in a single progenitor lineage. Neural Development, 2020, 15, 9.	2.4	10
12	Precise levels of nectin-3 are required for proper synapse formation in postnatal visual cortex. Neural Development, 2020, 15, 13.	2.4	2
13	The Hunchback temporal transcription factor determines motor neuron axon and dendrite targeting in <i>Drosophila</i> . Development (Cambridge), 2019, 146, .	2.5	24
14	Regulation of subcellular dendritic synapse specificity by axon guidance cues. ELife, 2019, 8, .	6.0	19
15	Temporal identity establishes columnar neuron morphology, connectivity, and function in a Drosophila navigation circuit. ELife, 2019, 8, .	6.0	38
16	Neuroblast-specific open chromatin allows the temporal transcription factor, Hunchback, to bind neuroblast-specific loci. ELife, 2019, 8, .	6.0	46
17	A multilayer circuit architecture for the generation of distinct locomotor behaviors in Drosophila. ELife, 2019, 8, .	6.0	78
18	Drosophila nucleostemin 3 is required to maintain larval neuroblast proliferation. Developmental Biology, 2018, 440, 1-12.	2.0	9

#	Article	IF	CITATIONS
19	Neural circuits driving larval locomotion in Drosophila. Neural Development, 2018, 13, 6.	2.4	84
20	MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. ELife, 2018, 7, .	6.0	68
21	A repressor-decay timer for robust temporal patterning in embryonic Drosophila neuroblast lineages. ELife, 2018, 7, .	6.0	31
22	Immunofluorescent antibody staining of intact Drosophila larvae. Nature Protocols, 2017, 12, 1-14.	12.0	28
23	Temporal Patterning in the <i>Drosophila</i> CNS. Annual Review of Cell and Developmental Biology, 2017, 33, 219-240.	9.4	214
24	Playing Well with Others: Extrinsic Cues Regulate Neural Progenitor Temporal Identity to Generate Neuronal Diversity. Trends in Genetics, 2017, 33, 933-942.	6.7	34
25	Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Development (Cambridge), 2017, 144, 4552-4562.	2.5	53
26	The Hunchback temporal transcription factor establishes, but is not required to maintain, early-born neuronal identity. Neural Development, 2017, 12, 1.	2.4	24
27	Opportunities lost and gained: Changes in progenitor competence during nervous system development. Neurogenesis (Austin, Tex), 2017, 4, e1324260.	1.5	10
28	Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity. ELife, 2017, 6, .	6.0	119
29	TU-Tagging: A Method for Identifying Layer-Enriched Neuronal Genes in Developing Mouse Visual Cortex. ENeuro, 2017, 4, ENEURO.0181-17.2017.	1.9	13
30	Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of <i>Drosophila</i> Larval Motor Programs. G3: Genes, Genomes, Genetics, 2016, 6, 2023-2031.	1.8	29
31	The <scp>R</scp> an <scp>GEF</scp> <scp>B</scp> j1 promotes prospero nuclear export and neuroblast selfâ€renewal. Developmental Neurobiology, 2015, 75, 485-493.	3.0	7
32	Even-Skipped+ Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude. Neuron, 2015, 88, 314-329.	8.1	110
33	Aging Neural Progenitors Lose Competence to Respond to Mitogenic Notch Signaling. Current Biology, 2015, 25, 3058-3068.	3.9	31
34	Applying thiouracil tagging to mouse transcriptome analysis. Nature Protocols, 2014, 9, 410-420.	12.0	47
35	Atlas-builder software and the eNeuro atlas: resources for developmental biology and neuroscience. Development (Cambridge), 2014, 141, 2524-2532.	2.5	35
36	Transient nuclear Prospero induces neural progenitor quiescence. ELife, 2014, 3, .	6.0	64

#	Article	IF	CITATIONS
37	Temporal fate specification and neural progenitor competence during development. Nature Reviews Neuroscience, 2013, 14, 823-838.	10.2	332
38	Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes and Development, 2013, 27, 98-115.	5.9	108
39	Developmentally Regulated Subnuclear Genome Reorganization Restricts Neural Progenitor Competence in Drosophila. Cell, 2013, 152, 97-108.	28.9	153
40	Combinatorial temporal patterning in progenitors expands neural diversity. Nature, 2013, 498, 449-455.	27.8	186
41	<i>midlife crisis</i> encodes a conserved zinc-finger protein required to maintain neuronal differentiation in <i>Drosophila</i> . Development (Cambridge), 2013, 140, 4155-4164.	2.5	45
42	Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants. PLoS Genetics, 2012, 8, e1002515.	3.5	48
43	Characterization of <i>Drosophila</i> Larval Crawling at the Level of Organism, Segment, and Somatic Body Wall Musculature. Journal of Neuroscience, 2012, 32, 12460-12471.	3.6	186
44	The Snail Family Member Worniu Is Continuously Required in Neuroblasts to Prevent Elav-Induced Premature Differentiation. Developmental Cell, 2012, 23, 849-857.	7.0	41
45	A Resource for Manipulating Gene Expression and Analyzing cis-Regulatory Modules in the Drosophila CNS. Cell Reports, 2012, 2, 1002-1013.	6.4	113
46	Identification of hunchback cis-regulatory DNA conferring temporal expression in neuroblasts and neurons. Gene Expression Patterns, 2012, 12, 11-17.	0.8	20
47	Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis. Developmental Biology, 2012, 361, 137-146.	2.0	34
48	Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts. Developmental Biology, 2012, 363, 258-265.	2.0	26
49	Asymmetric cortical extension leads to asymmetric cell division in Drosophila neuroblasts. FASEB Journal, 2012, 26, 591.4.	0.5	0
50	Asymmetric cortical extension shifts cleavage furrow position in <i>Drosophila</i> neuroblasts. Molecular Biology of the Cell, 2011, 22, 4220-4226.	2.1	59
51	Canoe binds RanGTP to promote PinsTPR/Mud-mediated spindle orientation. Journal of Cell Biology, 2011, 195, 369-376.	5.2	62
52	The pipsqueak-domain proteins Distal antenna and Distal antenna-related restrict Hunchback neuroblast expression and early-born neuronal identity. Development (Cambridge), 2011, 138, 1727-1735.	2.5	29
53	Drosophilatype II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Development, 2010, 5, 26.	2.4	103
54	Recombineering Hunchback identifies two conserved domains required to maintain neuroblast competence and specify early-born neuronal identity. Development (Cambridge), 2010, 137, 1421-1430.	2.5	45

#	Article	IF	CITATIONS
55	Spindle orientation during asymmetric cell division. Nature Cell Biology, 2009, 11, 365-374.	10.3	440
56	TU-tagging: cell type–specific RNA isolation from intact complex tissues. Nature Methods, 2009, 6, 439-441.	19.0	168
57	Apical/Basal Spindle Orientation Is Required for Neuroblast Homeostasis and Neuronal Differentiation in Drosophila. Developmental Cell, 2009, 17, 134-141.	7.0	147
58	Identification of an Aurora-A/PinsLINKER/ Dlg Spindle Orientation Pathway using Induced Cell Polarity in S2 Cells. Cell, 2009, 138, 1150-1163.	28.9	197
59	Twins/PP2A regulates aPKC to control neuroblast cell polarity and self-renewal. Developmental Biology, 2009, 330, 399-405.	2.0	47
60	ldentification of <i>Drosophila</i> type II neuroblast lineages containing transit amplifying ganglion mother cells. Developmental Neurobiology, 2008, 68, 1185-1195.	3.0	342
61	Lis1/dynactin regulates metaphase spindle orientation in Drosophila neuroblasts. Developmental Biology, 2008, 319, 1-9.	2.0	100
62	Neural stem cells: balancing self-renewal with differentiation. Development (Cambridge), 2008, 135, 1575-1587.	2.5	361
63	Dap160/intersectin binds and activates aPKC to regulate cell polarity and cell cycle progression. Development (Cambridge), 2008, 135, 2739-2746.	2.5	50
64	Pdm and Castor close successive temporal identity windows in the NB3-1 lineage. Development (Cambridge), 2008, 135, 3491-3499.	2.5	79
65	Tools for neuroanatomy and neurogenetics in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9715-9720.	7.1	902
66	<i>Drosophila</i> Activin-β and the Activin-like product Dawdle function redundantly to regulate proliferation in the larval brain. Development (Cambridge), 2008, 135, 513-521.	2.5	67
67	Chinmo and Neuroblast Temporal Identity. Cell, 2006, 127, 254-256.	28.9	9
68	Brat Is a Miranda Cargo Protein that Promotes Neuronal Differentiation and Inhibits Neuroblast Self-Renewal. Developmental Cell, 2006, 10, 441-449.	7.0	293
69	Zfh1, a somatic motor neuron transcription factor, regulates axon exit from the CNS. Developmental Biology, 2006, 291, 253-263.	2.0	50
70	The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biology, 2006, 8, 594-600.	10.3	288
71	Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature, 2006, 439, 594-598.	27.8	289
72	Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes and Development, 2006, 20, 429-434.	5.9	89

#	Article	IF	CITATIONS
73	Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. Genes and Development, 2006, 20, 2618-2627.	5.9	114
74	Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes and Development, 2006, 20, 3464-3474.	5.9	241
75	Drosophila neuroblast 7-3 cell lineage: A model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. Journal of Comparative Neurology, 2005, 481, 240-251.	1.6	91
76	Regulation of Temporal Identity Transitions in Drosophila Neuroblasts. Developmental Cell, 2005, 8, 193-202.	7.0	178
77	Scribble protein domain mapping reveals a multistep localization mechanism and domains necessary for establishing cortical polarity. Journal of Cell Science, 2004, 117, 6061-6070.	2.0	113
78	Zebrafish and fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation. Development (Cambridge), 2004, 131, 5221-5232.	2.5	112
79	Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Nature Neuroscience, 2004, 7, 1293-1295.	14.8	66
80	SPECIFICATION OF TEMPORAL IDENTITY IN THE DEVELOPING NERVOUS SYSTEM. Annual Review of Cell and Developmental Biology, 2004, 20, 619-647.	9.4	236
81	Specification of motoneuron fate inDrosophila: Integration of positive and negative transcription factor inputs by a minimaleve enhancer. Journal of Neurobiology, 2003, 57, 193-203.	3.6	30
82	Regulation of neuroblast competence in Drosophila. Nature, 2003, 425, 624-628.	27.8	197
83	<i>Drosophila</i> aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. Journal of Cell Biology, 2003, 163, 1089-1098.	5.2	259
84	<i>DrosophilaHB9</i> Is Expressed in a Subset of Motoneurons and Interneurons, Where It Regulates Gene Expression and Axon Pathfinding. Journal of Neuroscience, 2002, 22, 9143-9149.	3.6	68
85	Drosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny. Cell, 2001, 106, 511-521.	28.9	604
86	Cell polarity: the PARty expands. Nature Cell Biology, 2001, 3, E7-E9.	10.3	35
87	<i>Drosophila</i> Amphiphysin is implicated in protein localization and membrane morphogenesis but not in synaptic vesicle endocytosis. Development (Cambridge), 2001, 128, 5005-5015.	2.5	67
88	The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature, 2000, 408, 596-600.	27.8	311
89	Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature, 1998, 391, 792-795.	27.8	244
90	Neural stem cells: From fly to vertebrates. Journal of Neurobiology, 1998, 36, 111-127.	3.6	76

#	Article	IF	CITATIONS
91	Neural stem cells: From fly to vertebrates. , 1998, 36, 111.		1
92	Neural stem cells: From fly to vertebrates. Journal of Neurobiology, 1998, 36, 111-127.	3.6	2
93	Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature, 1997, 390, 625-629.	27.8	296
94	The Embryonic Central Nervous System Lineages ofDrosophila melanogaster. Developmental Biology, 1996, 179, 41-64.	2.0	439
95	Specification of neuroblast identity in the Drosophila embryonic central nervous system by gooseberry-distal. Nature, 1995, 376, 427-430.	27.8	90
96	New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system. Mechanisms of Development, 1995, 53, 393-402.	1.7	191
97	The <i>prospero</i> gene encodes a divergent homeodomain protein that controls neuronal identity in <i>Drosophila</i> . Development (Cambridge), 1991, 113, 79-85.	2.5	45
98	Control of neuronal fate by the Drosophila segmentation gene even-skipped. Nature, 1988, 333, 376-378.	27.8	269
99	Early events in insect neurogenesis. Developmental Biology, 1985, 111, 193-205.	2.0	265
100	Mechanosensory Input Shapes Drosophila Motor Behavior Through Patterned Spontaneous Network Activity. SSRN Electronic Journal, 0, , .	0.4	0