List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4693253/publications.pdf Version: 2024-02-01

7HILIN YANG

#	Article	IF	CITATIONS
1	In Situ Raman Probing of Hotâ€Electron Transfer at Gold–Graphene Interfaces with Atomic Layer Accuracy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
2	Nonlinear light amplification via 3D plasmonic nanocavities. Optics Express, 2022, 30, 2610.	3.4	2
3	Active Tendon Control of Stay Cable by a Giant Magnetostrictive Actuator Considering Time-Delay. Applied Sciences (Switzerland), 2022, 12, 2666.	2.5	2
4	Ultrasensitive and ultrafast nonlinear optical characterization of surface plasmons. APL Materials, 2022, 10, 030701.	5.1	2
5	Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. Nano Letters, 2022, 22, 4260-4268.	9.1	40
6	Statistical Strategy for Quantitative Evaluation of Plasmon-Enhanced Spectroscopy. ACS Photonics, 2022, 9, 1733-1740.	6.6	3
7	Bacteria Inspired Internal Standard SERS Substrate for Quantitative Detection. ACS Applied Bio Materials, 2021, 4, 2009-2019.	4.6	24
8	Largeâ€Area Plasmonic Metamaterial with Thicknessâ€Dependent Absorption. Advanced Optical Materials, 2021, 9, .	7.3	20
9	Segmented Ag–Au–Ag Heterojunction Nanorods: Pressure-Assisted Aqueous-Phase Synthesis and Engineered Femtosecond-to-Nanosecond Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 989-996.	4.6	9
10	Plasma Cleaning and Self-Limited Welding of Silver Nanowire Films for Flexible Transparent Conductors. ACS Applied Nano Materials, 2021, 4, 1664-1671.	5.0	14
11	Boosting Photocatalytic Hydrogen Evolution Reaction Using Dual Plasmonic Antennas. ACS Catalysis, 2021, 11, 5047-5053.	11.2	62
12	Quasi-Bragg plasmon modes for highly efficient plasmon-enhanced second-harmonic generation at near-ultraviolet frequencies. Optics Express, 2021, 29, 21444.	3.4	3
13	In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nature Communications, 2021, 12, 4557.	12.8	24
14	Manipulation of Ultrafast Nonlinear Optical Response Based on Surface Plasmon Resonance. Advanced Optical Materials, 2021, 9, 2100847.	7.3	8
15	Light-Trapped Nanocavities for Ultraviolet Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2021, 125, 17241-17247.	3.1	7
16	Rational Design of 3D Plasmonic Superstructure for Enhanced Photocatalytic Hydrogen Evolution Reaction in Wide Spectral Region. Journal of Physical Chemistry C, 2021, 125, 25455-25461.	3.1	5
17	In situ Raman spectroscopyÂreveals the structure and dissociation of interfacial water. Nature, 2021, 600, 81-85.	27.8	381
18	Strong coupling between magnetic resonance and propagating surface plasmons at visible light frequencies. Journal of Chemical Physics, 2020, 152, 014702.	3.0	9

#	Article	lF	CITATIONS
19	Broadband unidirectional scattering in visible ranges and controllable hot-spot spatial transfer via a single nanoparticle. Applied Surface Science, 2020, 528, 146489.	6.1	10
20	Multiband enhanced second-harmonic generation via plasmon hybridization. Journal of Chemical Physics, 2020, 153, 151102.	3.0	4
21	In Situ Raman Study of CO Electrooxidation on Pt(hkl) Singleâ€Crystal Surfaces in Acidic Solution. Angewandte Chemie, 2020, 132, 23760-23764.	2.0	1
22	In Situ Raman Study of CO Electrooxidation on Pt(<i>hkl</i>) Singleâ€Crystal Surfaces in Acidic Solution. Angewandte Chemie - International Edition, 2020, 59, 23554-23558.	13.8	47
23	Unveiling the size effect of Pt-on-Au nanostructures on CO and methanol electrooxidation by <i>in situ</i> electrochemical SERS. Nanoscale, 2020, 12, 5341-5346.	5.6	18
24	Competitive Effects of Surface Plasmon Resonances and Interband Transitions on Plasmon-Enhanced Second-Harmonic Generation at Near-Ultraviolet Frequencies. Physical Review Applied, 2020, 13, .	3.8	11
25	Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer. Biosensors and Bioelectronics, 2020, 154, 112067.	10.1	60
26	Overcurrent Electrodeposition of Fractal Plasmonic Black Gold with Broad-Band Absorption Properties for Excitation-Immune SERS. ACS Omega, 2020, 5, 8293-8298.	3.5	7
27	<i>In situ</i> Raman study of the photoinduced behavior of dye molecules on TiO ₂ (<i>hkl</i>) single crystal surfaces. Chemical Science, 2020, 11, 6431-6435.	7.4	13
28	Plasmon-Enhanced Fluorescence of Phosphors Using Shell-Isolated Nanoparticles for Display Technologies. ACS Applied Nano Materials, 2020, 3, 5846-5854.	5.0	14
29	Plasmonic resonance-linewidth shrinkage to boost biosensing. Photonics Research, 2020, 8, 1226.	7.0	31
30	Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes. Nanophotonics, 2020, 9, 815-822.	6.0	12
31	Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays. Nanoscale, 2019, 11, 16428-16436.	5.6	12
32	3D Hotspots Platform for Plasmon Enhanced Raman and Second Harmonic Generation Spectroscopies and Quantitative Analysis. Advanced Optical Materials, 2019, 7, 1901010.	7.3	23
33	Understanding the strain effect of Au@Pd nanocatalysts by <i>in situ</i> surface-enhanced Raman spectroscopy. Chemical Communications, 2019, 55, 8824-8827.	4.1	11
34	In situ probing electrified interfacial water structures at atomically flat surfaces. Nature Materials, 2019, 18, 697-701.	27.5	352
35	Probing the Location of 3D Hot Spots in Gold Nanoparticle Films Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 5316-5322.	6.5	44
36	In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nature Energy, 2019, 4, 60-67.	39.5	478

#	Article	IF	CITATIONS
37	An ultranarrow SPR linewidth in the UV region for plasmonic sensing. Nanoscale, 2019, 11, 4061-4066.	5.6	38
38	Surface plasmon resonance "hot spots―and near-field enhanced spectroscopy at interfaces. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147801.	0.5	2
39	Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmonâ€Enhanced TiO ₂ Photoelectrodes. Angewandte Chemie - International Edition, 2018, 57, 5278-5282.	13.8	365
40	Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy. Nano Letters, 2018, 18, 2209-2216.	9.1	96
41	Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmonâ€Enhanced TiO ₂ Photoelectrodes. Angewandte Chemie, 2018, 130, 5376-5380.	2.0	45
42	CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction. Nano Energy, 2018, 49, 363-371.	16.0	107
43	Shellâ€Isolated Tipâ€Enhanced Raman and Fluorescence Spectroscopy. Angewandte Chemie, 2018, 130, 7645-7649.	2.0	12
44	Rücktitelbild: Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes (Angew. Chem. 19/2018). Angewandte Chemie, 2018, 130, 5656-5656.	2.0	0
45	Shellâ€Isolated Tipâ€Enhanced Raman and Fluorescence Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 7523-7527.	13.8	44
46	A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm. Advanced Materials, 2018, 30, e1706031.	21.0	132
47	Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays. Nanomaterials, 2018, 8, 1012.	4.1	4
48	Largeâ€Area Hybrid Plasmonic Optical Cavity (HPOC) Substrates for Surfaceâ€Enhanced Raman Spectroscopy. Advanced Functional Materials, 2018, 28, 1802263.	14.9	51
49	Plasmoelectric Potential Mapping of a Single Nanoparticle. ACS Photonics, 2018, 5, 3519-3525.	6.6	16
50	Probing Interfacial Electronic and Catalytic Properties on Wellâ€Defined Surfaces by Using Inâ€Situ Raman Spectroscopy. Angewandte Chemie, 2018, 130, 11427-11431.	2.0	19
51	Directional surface plasmon-coupled emission of tilted-tip enhanced spectroscopy. Nanophotonics, 2018, 7, 1325-1332.	6.0	20
52	Probing Interfacial Electronic and Catalytic Properties on Wellâ€Defined Surfaces by Using Inâ€Situ Raman Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 11257-11261.	13.8	60
53	Strong Fluorescence Enhancement with Silica-Coated Au Nanoshell Dimers. Plasmonics, 2017, 12, 263-269.	3.4	5
54	Temperatureâ€Related Morphological Evolution of MoS ₂ Domains on Graphene and Electron Transfer within Heterostructures. Small, 2017, 13, 1603549.	10.0	20

#	Article	IF	CITATIONS
55	In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature Communications, 2017, 8, 15447.	12.8	185
56	Acoustic Graphene Plasmon Nanoresonators for Field-Enhanced Infrared Molecular Spectroscopy. ACS Photonics, 2017, 4, 3089-3097.	6.6	43
57	High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO ₂ Core–Shell Nanoparticles. ACS Sensors, 2017, 2, 1369-1376.	7.8	43
58	Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis. Science Advances, 2017, 3, eaaq1059.	10.3	34
59	Revealing the Role of Interfacial Properties on Catalytic Behaviors by <i>in Situ</i> Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 10339-10346.	13.7	127
60	Probing the electronic and catalytic properties of a bimetallic surface with 3â€nm resolution. Nature Nanotechnology, 2017, 12, 132-136.	31.5	290
61	A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. Journal of Raman Spectroscopy, 2016, 47, 662-667.	2.5	49
62	Adsorption of Dye Molecules on Single Crystalline Semiconductor Surfaces: An Electrochemical Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy Study. Journal of Physical Chemistry C, 2016, 120, 22500-22507.	3.1	15
63	Gold nanorings synthesized via a stress-driven collapse and etching mechanism. NPG Asia Materials, 2016, 8, e323-e323.	7.9	17
64	A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy. Scientific Reports, 2016, 6, 19558.	3.3	32
65	Self-assembly of subwavelength nanostructures with symmetry breaking in solution. Nanoscale, 2016, 8, 2951-2959.	5.6	10
66	Multifunctional Fe ₃ O ₄ @SiO ₂ –Au Satellite Structured SERS Probe for Charge Selective Detection of Food Dyes. ACS Applied Materials & Interfaces, 2016, 8, 3056-3062.	8.0	77
67	How To Light Special Hot Spots in Multiparticle–Film Configurations. ACS Nano, 2016, 10, 581-587.	14.6	79
68	Internal-Modified Dithiol DNA–Directed Au Nanoassemblies: Geometrically Controlled Self–Assembly and Quantitative Surface–Enhanced Raman Scattering Properties. Scientific Reports, 2015, 5, 16715.	3.3	8
69	Large scale synthesis of pinholeâ€free shellâ€isolated nanoparticles (SHINs) using improved atomic layer deposition (ALD) method for practical applications. Journal of Raman Spectroscopy, 2015, 46, 1200-1204.	2.5	26
70	Electromagnetic Enhancement in Shell-Isolated Nanoparticle-Enhanced Raman Scattering from Gold Flat Surfaces. Journal of Physical Chemistry C, 2015, 119, 5246-5251.	3.1	44
71	Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy. Scientific Reports, 2015, 5, 9240.	3.3	83
72	Dimeric Core–Shell Ag ₂ @TiO ₂ Nanoparticles for Off-Resonance Raman Study of the TiO ₂ –N719 Interface. Journal of Physical Chemistry C, 2015, 119, 18396-18403.	3.1	17

#	Article	IF	CITATIONS
73	"Smart―Ag Nanostructures for Plasmon-Enhanced Spectroscopies. Journal of the American Chemical Society, 2015, 137, 13784-13787.	13.7	157
74	Electrochemical Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2015, 137, 11928-11931.	13.7	232
75	Plasmon-Enhanced Second-Harmonic Generation Nanorulers with Ultrahigh Sensitivities. Nano Letters, 2015, 15, 6716-6721.	9.1	88
76	Fano Interference Between Higher Localized and Propagating Surface Plasmon Modes in Nanovoid Arrays. Plasmonics, 2015, 10, 71-76.	3.4	21
77	Probing the Location of Hot Spots by Surface-Enhanced Raman Spectroscopy: Toward Uniform Substrates. ACS Nano, 2014, 8, 528-536.	14.6	136
78	Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. Journal of the American Chemical Society, 2014, 136, 5332-5341.	13.7	293
79	Surface-Enhanced Raman Scattering on Uniform Pd and Pt Films: From Ill-Defined to Structured Surfaces. Journal of Physical Chemistry C, 2013, 117, 24843-24850.	3.1	14
80	LSPR properties of metal nanoparticles adsorbed at a liquid–liquid interface. Physical Chemistry Chemical Physics, 2013, 15, 5374.	2.8	40
81	Propagation and enhancement of ultraviolet radiation in metal–dielectric nanocables assisted by surface plasmon polaritons. Applied Physics Letters, 2013, 102, 171601.	3.3	2
82	SHINERS and plasmonic properties of Au Core SiO ₂ shell nanoparticles with optimal core size and shell thickness. Journal of Raman Spectroscopy, 2013, 44, 994-998.	2.5	79
83	Deep ultraviolet tip-enhanced Raman scattering. Chemical Communications, 2011, 47, 9131.	4.1	40
84	Direct visualization of the charge transfer in conjugated polymers. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1119-1123.	5.1	1
85	Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chemical Communications, 2011, 47, 3909.	4.1	72
86	FDTD for plasmonics: Applications in enhanced Raman spectroscopy. Science Bulletin, 2010, 55, 2635-2642.	1.7	61
87	Near-field coupling and SERS effects of palladium nanoparticle dimers. Science Bulletin, 2010, 55, 2930-2936.	1.7	6
88	Adjustment and control of SERS activity of metal substrates by pressure. Journal of Raman Spectroscopy, 2010, 41, 398-405.	2.5	10
89	Tunable Surface-Enhanced Raman Scattering from Aluminum Nanohole Arrays. , 2010, , .		0
90	Giant Raman enhancement on nanoporous gold film by conjugating with nanoparticles for single-molecule detection. Journal of Materials Chemistry, 2010, 20, 6891.	6.7	46

#	Article	IF	CITATIONS
91	Can <i>p</i> , <i>p</i> ′-Dimercaptoazobisbenzene Be Produced from <i>p</i> -Aminothiophenol by Surface Photochemistry Reaction in the Junctions of a Ag Nanoparticleâ^'Moleculeâ^'Ag (or Au) Film?. Journal of Physical Chemistry C, 2010, 114, 18263-18269.	3.1	114
92	Electromagnetic field enhancement in TERS configurations. Journal of Raman Spectroscopy, 2009, 40, 1343-1348.	2.5	187
93	Tipâ€enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on singleâ€crystal surfaces: tip regeneration, probe molecule, and enhancement effect. Journal of Raman Spectroscopy, 2009, 40, 1400-1406.	2.5	43
94	Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods. Journal of Physical Chemistry C, 2009, 113, 10459-10464.	3.1	83
95	Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles. Journal of Chemical Physics, 2009, 130, 234705.	3.0	51
96	Optimization of SERS activities of gold nanoparticles and gold ore–palladiumâ€shell nanoparticles by controlling size and shell thickness. Journal of Raman Spectroscopy, 2008, 39, 1679-1687.	2.5	148
97	Enhancement in middle-ultraviolet emission in a surface-plasmon-assisted coaxial nanocavity. Applied Physics Letters, 2008, 93, 091902.	3.3	4
98	Surface-enhanced Raman spectroscopy with ultraviolet excitation. Journal of Raman Spectroscopy, 2005, 36, 606-612.	2.5	42
99	Periodic trends in the bonding and vibrational coupling: Pyridine interacting with transition metals and noble metals studied by surface-enhanced Raman spectroscopy and density-functional theory. Journal of Chemical Physics, 2003, 119, 1701-1709.	3.0	59
100	Studies On Photorefractivity Of Liquid Crystals. , 1997, , .		0
101	Nonlinear Light Amplification Governed by Structural Asymmetry. Advanced Optical Materials, 0, , 2102215.	7.3	1