List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4693182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stomata in a state of emergency: H2O2 is the target locked. Trends in Plant Science, 2022, 27, 274-286.	8.8	27
2	Isolation of High-Molecular-Weight (HMW) DNA from Fusarium oxysporum for Long-Read Sequencing. Methods in Molecular Biology, 2022, 2391, 21-30.	0.9	1
3	A tale of many families: calcium channels in plant immunity. Plant Cell, 2022, 34, 1551-1567.	6.6	45
4	Deubiquitinating enzymes UBP12 and UBP13 stabilize the brassinosteroid receptor BRI1. EMBO Reports, 2022, 23, e53354.	4.5	25
5	Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays in Biochemistry, 2022, 66, 447-458.	4.7	12
6	Malectin-like receptor kinases as protector deities in plant immunity. Nature Plants, 2022, 8, 27-37.	9.3	24
7	Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature, 2022, 605, 332-339.	27.8	64
8	The oral secretion from Cotton Boll Weevil (Anthonomus grandis) induces defense responses in cotton (Gossypium spp) and Arabidopsis thaliana. Current Plant Biology, 2022, 31, 100250.	4.7	2
9	Fate and Transformation of 6:2 Fluorotelomer Sulfonic Acid Affected by Plant, Nutrient, Bioaugmentation, and Soil Microbiome Interactions. Environmental Science & Technology, 2022, 56, 10721-10731.	10.0	12
10	A nonproteinaceous <i>Fusarium</i> cell wall extract triggers receptorâ€like proteinâ€dependent immune responses in Arabidopsis and cotton. New Phytologist, 2021, 230, 275-289.	7.3	9
11	Plant plasma membraneâ€resident receptors: Surveillance for infections and coordination for growth and development. Journal of Integrative Plant Biology, 2021, 63, 79-101.	8.5	50
12	Noncanonical mono(ADP-ribosyl)ation of zinc finger SZF proteins counteracts ubiquitination for protein homeostasis in plant immunity. Molecular Cell, 2021, 81, 4591-4604.e8.	9.7	17
13	The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes. Nature Communications, 2021, 12, 5494.	12.8	54
14	More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. Current Opinion in Plant Biology, 2021, 63, 102051.	7.1	18
15	Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. Plant Physiology, 2021, 185, 1943-1965.	4.8	30
16	Accumulation and phytotoxicity of perfluorooctanoic acid and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate in Arabidopsis thaliana and Nicotiana benthamiana. Environmental Pollution, 2020, 259, 113817.	7.5	28
17	Lso-HPE1, an Effector of â€~ <i>Candidatus</i> Liberibacter solanacearum', Can Repress Plant Immune Response. Phytopathology, 2020, 110, 648-655.	2.2	22
18	A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity. Nature Communications, 2020, 11, 4859.	12.8	28

#	Article	IF	CITATIONS
19	The Cotton Wall-Associated Kinase GhWAK7A Mediates Responses to Fungal Wilt Pathogens by Complexing with the Chitin Sensory Receptors. Plant Cell, 2020, 32, 3978-4001.	6.6	80
20	It takes two to tango – molecular links between plant immunity and brassinosteroid signalling. Journal of Cell Science, 2020, 133, .	2.0	22
21	The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding. Nature Plants, 2020, 6, 1106-1115.	9.3	38
22	RNA Interference-Based Screen Reveals Concerted Functions of MEKK2 and CRCK3 in Plant Cell Death Regulation. Plant Physiology, 2020, 183, 331-344.	4.8	9
23	SERKs. Current Biology, 2020, 30, R293-R294.	3.9	14
24	Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature, 2020, 581, 199-203.	27.8	99
25	A tomato Bâ€box protein <i>Sl</i> <scp>BBX</scp> 20 modulates carotenoid biosynthesis by directly activating <i><scp>PHYTOENE SYNTHASE</scp>A1</i> , and is targeted for 26S proteasomeâ€mediated degradation. New Phytologist, 2019, 221, 279-294.	7.3	127
26	Orchestration of Processing Body Dynamics and mRNA Decay in Arabidopsis Immunity. Cell Reports, 2019, 28, 2194-2205.e6.	6.4	40
27	The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity. Nature Communications, 2019, 10, 4996.	12.8	59
28	The Receptor Kinases BAK1/SERK4 Regulate Ca2+ Channel-Mediated Cellular Homeostasis for Cell Death Containment. Current Biology, 2019, 29, 3778-3790.e8.	3.9	86
29	Return of old foes — recurrence of bacterial blight and Fusarium wilt of cotton. Current Opinion in Plant Biology, 2019, 50, 95-103.	7.1	28
30	Phosphatase GhDs <scp>PTP</scp> 3a interacts with annexin protein Gh <scp>ANN</scp> 8b to reversely regulate salt tolerance in cotton (<i>Gossypium</i> spp.). New Phytologist, 2019, 223, 1856-1872.	7.3	39
31	Proteolytic Processing of SERK3/BAK1 Regulates Plant Immunity, Development, and Cell Death. Plant Physiology, 2019, 180, 543-558.	4.8	42
32	Comparing Arabidopsis receptor kinase and receptor proteinâ€mediated immune signaling reveals BIK1â€dependent differences. New Phytologist, 2019, 221, 2080-2095.	7.3	73
33	Pipped at the Post: Pipecolic Acid Derivative Identified as SAR Regulator. Cell, 2018, 173, 286-287.	28.9	16
34	The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host and Microbe, 2018, 23, 485-497.e5.	11.0	92
35	Regulation of <i>Arabidopsis</i> brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1906-E1915.	7.1	134
36	Plant cell surface receptor-mediated signaling – a common theme amid diversity. Journal of Cell Science, 2018, 131, .	2.0	134

#	Article	IF	CITATIONS
37	The APEX Approaches: A Unified LRR-RK Network Revealed. Trends in Plant Science, 2018, 23, 372-374.	8.8	14
38	The Monocot-Specific Receptor-like Kinase SDS2 Controls Cell Death and Immunity in Rice. Cell Host and Microbe, 2018, 23, 498-510.e5.	11.0	96
39	Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC Plant Biology, 2018, 18, 211.	3.6	52
40	Plant cell surface molecular cypher: Receptor-like proteins and their roles in immunity and development. Plant Science, 2018, 274, 242-251.	3.6	71
41	From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 2017, 55, 109-137.	7.8	375
42	TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications, 2017, 8, 15588.	12.8	144
43	Regulation of cotton (<i>GossypiumÂhirsutum</i>) drought responses by mitogenâ€activated protein (<scp>MAP</scp>) kinase cascadeâ€mediated phosphorylation of Gh <scp>WRKY</scp> 59. New Phytologist, 2017, 215, 1462-1475.	7.3	91
44	Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases. Plant Cell, 2017, 29, 3140-3156.	6.6	89
45	Protein ADP-Ribosylation Takes Control in Plant–Bacterium Interactions. PLoS Pathogens, 2016, 12, e1005941.	4.7	29
46	Bacterial AvrRpt2-Like Cysteine Proteases Block Activation of the Arabidopsis Mitogen-Activated Protein Kinases, MPK4 and MPK11. Plant Physiology, 2016, 171, 2223-2238.	4.8	67
47	SERKing Coreceptors for Receptors. Trends in Plant Science, 2016, 21, 1017-1033.	8.8	172
48	PARylation of the forkheadâ€associated domain protein DAWDLE regulates plant immunity. EMBO Reports, 2016, 17, 1799-1813.	4.5	42
49	Specific control of Arabidopsis BAK1/SERK4-regulated cell death by protein glycosylation. Nature Plants, 2016, 2, 15218.	9.3	95
50	Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host and Microbe, 2016, 19, 641-650.	11.0	241
51	Ligand-Induced Receptor-like Kinase Complex Regulates Floral Organ Abscission in Arabidopsis. Cell Reports, 2016, 14, 1330-1338.	6.4	157
52	Stack Heterotrimeric G Proteins and MAPK Cascades on a RACK. Molecular Plant, 2015, 8, 1691-1693.	8.3	11
53	Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses. PLoS Genetics, 2015, 11, e1004936.	3.5	57
54	The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence. Journal of Experimental Botany, 2015, 66, 3353-3366.	4.8	76

#	Article	IF	CITATIONS
55	Phosphorylation of Trihelix Transcriptional Repressor ASR3 by MAP KINASE4 Negatively Regulates Arabidopsis Immunity. Plant Cell, 2015, 27, 839-856.	6.6	109
56	Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning. Current Biology, 2015, 25, 2361-2372.	3.9	242
57	Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates <i>Arabidopsis</i> innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3632-3637.	7.1	151
58	Modulation of RNA Polymerase II Phosphorylation Downstream of Pathogen Perception Orchestrates Plant Immunity. Cell Host and Microbe, 2014, 16, 748-758.	11.0	70
59	The <i><scp>P</scp>seudomonas syringae</i> effector HopF2 suppresses Arabidopsis immunity by targeting <scp>BAK</scp> 1. Plant Journal, 2014, 77, 235-245.	5.7	110
60	Ubiquitination of pattern recognition receptors in plant innate immunity. Molecular Plant Pathology, 2014, 15, 737-746.	4.2	42
61	Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Science, 2014, 228, 118-126.	3.6	119
62	<i>BOTRYTIS</i> -INDUCED KINASE1 Modulates Arabidopsis Resistance to Green Peach Aphids via PHYTOALEXIN DEFICIENT4 Â Â. Plant Physiology, 2014, 165, 1657-1670.	4.8	75
63	Ubiquitination of Plant Immune Receptors. Methods in Molecular Biology, 2014, 1209, 219-231.	0.9	12
64	Big Roles of Small Kinases: The Complex Functions of Receptor‣ike Cytoplasmic Kinases in Plant Immunity and Development. Journal of Integrative Plant Biology, 2013, 55, 1188-1197.	8.5	108
65	Bifurcation of Arabidopsis NLR Immune Signaling via Ca2+-Dependent Protein Kinases. PLoS Pathogens, 2013, 9, e1003127.	4.7	257
66	Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12114-12119.	7.1	148
67	Cotton <i>Gh</i> <scp><i>BAK</i></scp> <i>1</i> Mediates <i>Verticillium</i> Wilt Resistance and Cell Death. Journal of Integrative Plant Biology, 2013, 55, 586-596.	8.5	84
68	Direct Ubiquitination of Pattern Recognition Receptor FLS2 Attenuates Plant Innate Immunity. Science, 2011, 332, 1439-1442.	12.6	510
69	Silencing <i>GhNDR1</i> and <i>GhMKK2</i> compromises cotton resistance to Verticillium wilt. Plant Journal, 2011, 66, 293-305.	5.7	222
70	Differential innate immune signalling via Ca2+ sensor protein kinases. Nature, 2010, 464, 418-422.	27.8	750
71	A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 496-501.	7.1	701
72	Phosphorylation of receptor-like cytoplasmic kinases by bacterial Flagellin. Plant Signaling and Behavior, 2010, 5, 598-600.	2.4	22

#	Article	IF	CITATIONS
73	One for all: the receptor-associated kinase BAK1. Trends in Plant Science, 2009, 14, 535-541.	8.8	281
74	Bacterial Effectors Target the Common Signaling Partner BAK1 to Disrupt Multiple MAMP Receptor-Signaling Complexes and Impede Plant Immunity. Cell Host and Microbe, 2008, 4, 17-27.	11.0	498
75	The Use of Protoplasts to Study Innate Immune Responses. , 2007, 354, 1-10.		76
76	Intercepting Host MAPK Signaling Cascades by Bacterial Type III Effectors. Cell Host and Microbe, 2007, 1, 167-174.	11.0	77
77	Endless Hide-and-Seek: Dynamic Co-evolution in Plant-Bacterium Warfare. Journal of Integrative Plant Biology, 2007, 49, 105-111.	8.5	15
78	Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity. Cell, 2006, 125, 563-575.	28.9	386