
Seino A K Jongkees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4691789/publications.pdf Version: 2024-02-01

SEINO A K IONCKEES

#	Article	IF	CITATIONS
1	Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology, 2018, 28, 3-8.	2.5	175
2	Unusual Enzymatic Glycoside Cleavage Mechanisms. Accounts of Chemical Research, 2014, 47, 226-235.	15.6	67
3	Rapid Discovery of Potent and Selective Glycosidase-Inhibiting De Novo Peptides. Cell Chemical Biology, 2017, 24, 381-390.	5.2	46
4	Glycoside Cleavage by a New Mechanism in Unsaturated Glucuronyl Hydrolases. Journal of the American Chemical Society, 2011, 133, 19334-19337.	13.7	43
5	Structural and Biochemical Characterization of Glycoside Hydrolase Family 79 β-Glucuronidase from Acidobacterium capsulatum. Journal of Biological Chemistry, 2012, 287, 14069-14077.	3.4	39
6	Macrocyclic peptides as allosteric inhibitors of nicotinamide <i>N</i> -methyltransferase (NNMT). RSC Chemical Biology, 2021, 2, 1546-1555.	4.1	33
7	Mass-spectrometric characterization of two posttranslational modifications of cysteine dioxygenase. Journal of Biological Inorganic Chemistry, 2009, 14, 913-921.	2.6	30
8	Linker-free incorporation of carbohydrates into in vitro displayed macrocyclic peptides. Chemical Science, 2017, 8, 1474-1481.	7.4	20
9	Stereoselective Total Synthesis of Aminoiminohexitols via Carbamate Annulation. Journal of Organic Chemistry, 2011, 76, 9611-9621.	3.2	19
10	Folding Then Binding vs Folding Through Binding in Macrocyclic Peptide Inhibitors of Human Pancreatic α-Amylase. ACS Chemical Biology, 2019, 14, 1751-1759.	3.4	16
11	Discovery of Potent Cyclic Sulfopeptide Chemokine Inhibitors via Reprogrammed Genetic Code mRNA Display. Journal of the American Chemical Society, 2020, 142, 9141-9146.	13.7	16
12	Model foldamers: applications and structures of stable macrocyclic peptides identified using in vitro selection. New Journal of Chemistry, 2015, 39, 3197-3207.	2.8	15
13	Highâ€Throughput Approaches in Carbohydrateâ€Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angewandte Chemie - International Edition, 2019, 58, 12750-12760.	13.8	14
14	The â€~mirror-image' postulate as a guide to the selection and evaluation of pyrrolidines as α-l-fucosidase inhibitors. Carbohydrate Research, 2013, 367, 29-32.	2.3	13
15	Mechanistic Investigations of Unsaturated Glucuronyl Hydrolase from Clostridium perfringens. Journal of Biological Chemistry, 2014, 289, 11385-11395.	3.4	8
16	Highâ€Throughput Approaches in Carbohydrateâ€Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angewandte Chemie, 2019, 131, 12880-12890.	2.0	7
17	Mechanistic Insights from Substrate Preference in Unsaturated Glucuronyl Hydrolase. ChemBioChem, 2014, 15, 124-134.	2.6	6
18	Suppression of Formylation Provides an Alternative Approach to Vacant Codon Creation in Bacterial In Vitro Translation. Angewandte Chemie - International Edition, 2020, 59, 21870-21874.	13.8	6

SEINO A K JONGKEES

#	Article	IF	CITATIONS
19	Towards Tuneable Retaining Glycosidaseâ€Inhibiting Peptides by Mimicry of a Plant Flavonol Warhead. ChemBioChem, 2017, 18, 2333-2339.	2.6	6
20	Phosphine addition to dehydroalanine for peptide modification. Organic and Biomolecular Chemistry, 2022, 20, 3081-3085.	2.8	4
21	Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNAâ€Displayed Peptide Libraries. ChemBioChem, 2022, 23, .	2.6	3
22	Crystal structure of the <i>Propionibacterium acnes</i> surface sialidase, a drug target for <i>P. acnes</i> -associated diseases. Glycobiology, 2022, 32, 162-170.	2.5	2
23	Suppression of Formylation Provides an Alternative Approach to Vacant Codon Creation in Bacterial In Vitro Translation. Angewandte Chemie, 2020, 132, 22054-22058.	2.0	1
24	Câ€Terminal Tag Location Hampers in Vitro Profiling of OGT Peptide Substrates by mRNA Display. ChemBioChem, 2021, 22, 666-671.	2.6	1
25	Mimicking the Nucleosomal Context in Peptide-Based Binders of a H3K36me Reader Increases Binding Affinity While Altering the Binding Mode. Molecules, 2020, 25, 4951.	3.8	0