Chun-Long Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4691270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospectively defined patterns of APOBEC3A mutagenesis are prevalent in human cancers. Cell Reports, 2022, 38, 110555.	6.4	25
2	GC content, but not nucleosome positioning, directly contributes to intron splicing efficiency in <i>Paramecium</i> . Genome Research, 2022, 32, 699-709.	5.5	6
3	Kronos scRT: a uniform framework for single-cell replication timing analysis. Nature Communications, 2022, 13, 2329.	12.8	9
4	Cohesin-mediated loop anchors confine the locations of human replication origins. Nature, 2022, 606, 812-819.	27.8	47
5	Topoisomerase I prevents transcription-replication conflicts at transcription termination sites. Molecular and Cellular Oncology, 2021, 8, 1843951.	0.7	8
6	DNA molecular combing-based replication fork directionality profiling. Nucleic Acids Research, 2021, 49, e69-e69.	14.5	7
7	DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans. Nature Communications, 2021, 12, 4280.	12.8	9
8	Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Molecular Cell, 2021, 81, 2975-2988.e6.	9.7	57
9	Editorial: DNA Replication Stress and Cell Fate. Frontiers in Cell and Developmental Biology, 2021, 9, 778486.	3.7	0
10	Reply to Alexander Yang, Vincent L. Cannataro, Jeffrey P. Townsend's Letter to the Editor, re: Ming-Jun Shi, Xiang-Yu Meng, Philippe Lamy, et al. APOBEC-mediated Mutagenesis as, a Likely Cause of FGFR3 S249C Mutation Over-representation in Bladder Cancer. Eur Urol 2019, 76:9–13. European Urology, 2020, 77, e26-e27.	1.9	3
11	Replication Stress Induces Global Chromosome Breakage in the Fragile X Genome. Cell Reports, 2020, 32, 108179.	6.4	33
12	Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer. Genome Medicine, 2020, 12, 85.	8.2	39
13	Exo1 recruits Cdc5 polo kinase to MutLî³ to ensure efficient meiotic crossover formation. Proceedings of the United States of America, 2020, 117, 30577-30588.	7.1	28
14	Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nature Communications, 2020, 11, 3940.	12.8	105
15	DNA polymerase α interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands. Science Advances, 2020, 6, eabb5820.	10.3	62
16	The impact of transcription-mediated replication stress on genome instability and human disease. Genome Instability & Disease, 2020, 1, 207-234.	1.1	8
17	APOBEC-mediated Mutagenesis as a Likely Cause of FGFR3 S249C Mutation Over-representation in Bladder Cancer. European Urology, 2019, 76, 9-13.	1.9	34
18	Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide. Nature Communications, 2019, 10, 5693.	12.8	73

CHUN-LONG CHEN

#	Article	IF	CITATIONS
19	Replication landscape of the human genome. Nature Communications, 2016, 7, 10208.	12.8	259
20	From the chromatin interaction network to the organization of the human genome into replication N/U-domains. New Journal of Physics, 2014, 16, 115014.	2.9	12
21	From Simple Bacterial and Archaeal Replicons to Replication N/U-Domains. Journal of Molecular Biology, 2013, 425, 4673-4689.	4.2	32
22	Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nature Protocols, 2013, 8, 98-110.	12.0	50
23	Megabase Replication Domains Along the Human Genome: Relation to Chromatin Structure and Genome Organisation. Sub-Cellular Biochemistry, 2013, 61, 57-80.	2.4	15
24	Replication Fork Polarity Gradients Revealed by Megabase-Sized U-Shaped Replication Timing Domains in Human Cell Lines. PLoS Computational Biology, 2012, 8, e1002443.	3.2	70
25	Linking the DNA strand asymmetry to the spatio-temporal replication program. European Physical Journal E, 2012, 35, 92.	1.6	16
26	Linking the DNA strand asymmetry to the spatio-temporal replication program. European Physical Journal E, 2012, 35, 123.	1.6	13
27	XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature, 2011, 475, 114-117.	27.8	329
28	Tight protein–DNA interactions favor gene silencing. Genes and Development, 2011, 25, 1365-1370.	5.9	71
29	Replication-Associated Mutational Asymmetry in the Human Genome. Molecular Biology and Evolution, 2011, 28, 2327-2337.	8.9	66
30	Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome. PLoS Computational Biology, 2011, 7, e1002322.	3.2	124
31	Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Research, 2010, 20, 447-457.	5.5	187
32	SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights. BMC Genomics, 2009, 10, 515.	2.8	15
33	Genome-wide evolutionary analysis of the noncoding RNA genes and noncoding DNA of <i>Paramecium tetraurelia</i> . Rna, 2009, 15, 503-514.	3.5	11
34	Genomewide Analysis of Box C/D and Box H/ACA snoRNAs in <i>Chlamydomonas reinhardtii</i> Reveals an Extensive Organization Into Intronic Gene Clusters. Genetics, 2008, 179, 21-30.	2.9	27
35	Exploration of Pairing Constraints Identifies a 9 Base-pair Core within Box C/D snoRNA–rRNA Duplexes. Journal of Molecular Biology, 2007, 369, 771-783.	4.2	30
36	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354

CHUN-LONG CHEN

#	Article	IF	CITATIONS
37	Genome-wide analyses of two families of snoRNA genes from Drosophila melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. Rna, 2005, 11, 1303-1316.	3.5	69
38	Identification and functional analysis of 23 novel box C/D snoRNAs from Oryza sativa. Science Bulletin, 2003, 48, 2077.	1.7	0
39	The high diversity of snoRNAs in plants: identification and comparative study of 120 snoRNA genes from Oryza sativa. Nucleic Acids Research, 2003, 31, 2601-2613.	14.5	64
40	A novel gene organization: intronic snoRNA gene clusters from Oryza sativa. Nucleic Acids Research, 2002, 30, 3262-3272.	14.5	38