Nisar Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4691197/publications.pdf

Version: 2024-02-01

		81900	138484
134	4,222	39	58
papers	citations	h-index	g-index
124	124	124	2005
134	134	134	2885
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Experimental and theoretical review on covalent coupling and elemental doping of carbon nanomaterials for environmental photocatalysis. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 215-256.	12.3	10
2	Engineering novel gold nanoparticles using Sageretia thea leaf extract and evaluation of their biological activities. Journal of Nanostructure in Chemistry, 2022, 12, 129-140.	9.1	33
3	Hazardous wastes, adverse impacts, and management strategies: a way forward to environmental sustainability. Environment, Development and Sustainability, 2022, 24, 9731-9756.	5.0	8
4	Optoelectronic properties of thermally coated tin selenide thin films for photovoltaics. International Journal of Energy Research, 2022, 46, 3725-3731.	4.5	0
5	Metal-organic framework for removal of environmental contaminants. , 2022, , 561-577.		O
6	Environmental impacts of hazardous waste, and management strategies to reconcile circular economy and eco-sustainability. Science of the Total Environment, 2022, 807, 150856.	8.0	67
7	Separation and remediation of environmental pollutants using metal–organic framework-based tailored materials. Environmental Science and Pollution Research, 2022, 29, 4822-4842.	5.3	9
8	Synthesis of ternary-based visible light nano-photocatalyst for decontamination of organic dyes-loaded wastewater. Chemosphere, 2022, 289, 133121.	8.2	32
9	Advanced catalytic ozonation for degradation of pharmaceutical pollutants―A review. Chemosphere, 2022, 289, 133208.	8.2	130
10	Nanoadsorbents as a green approach for removal of environmental pollutants., 2022,, 435-454.		3
11	Treatment of pulp and paper industry waste effluents and contaminants. , 2022, , 349-370.		O
12	Electrospun cellulose composite nanofibers and their biotechnological applications., 2022,, 329-348.		2
13	Nanobiosorbents: Basic principles, synthesis, and application for contaminants removal., 2022,, 45-59.		3
14	Introduction to nano-biosorbents., 2022,, 29-43.		0
15	Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. Chemosphere, 2022, 297, 134163.	8.2	57
16	Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. Environmental Research, 2022, 211, 113060.	7.5	47
17	Nanostructured materials for water/wastewater remediation. , 2022, , 413-432.		0
18	Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. Chemosphere, 2022, 305, 135291.	8.2	13

#	Article	IF	CITATIONS
19	Nanoarchitectonics: Porous Hydrogel as Bio-sorbent for Effective Remediation of Hazardous Contaminants. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3301-3320.	3.7	11
20	Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. Chemosphere, 2022, 304, 135312.	8.2	22
21	Exploration of solid waste materials for sustainable manufacturing of cementitious composites. Environmental Science and Pollution Research, 2022, 29, 86606-86615.	5.3	4
22	Magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composites nanomaterials with hydrophilic wettability for efficient oil-water separation. Journal of Environmental Management, 2022, 319, 115690.	7.8	3
23	Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. Chemosphere, 2022, 306, 135656.	8.2	9
24	Fabrication, characterization, and photocatalytic degradation potential of chitosan-conjugated manganese magnetic nano-biocomposite for emerging dye pollutants. Chemosphere, 2022, 306, 135647.	8.2	21
25	Engineered Hybrid Materials with Smart Surfaces for Effective Mitigation of Petroleum-Originated Pollutants. Engineering, 2021, 7, 1492-1503.	6.7	14
26	The Influence of Surface Modified Silica Nanoparticles: Properties of Epoxy Nanocomposites. Zeitschrift Fur Physikalische Chemie, 2021, 235, 649-661.	2.8	7
27	Fabrication and characterization of inverse opal tin dioxide as a novel and high-performance photocatalyst for degradation of Rhodamine B dye. Inorganic and Nano-Metal Chemistry, 2021, 51, 150-158.	1.6	12
28	Unprecedented environmental and energy impacts and challenges of COVID-19 pandemic. Environmental Research, 2021, 193, 110443.	7.5	73
29	Fabrication, characterization, morphological and thermal investigations of functionalized multi-walled carbon nanotubes reinforced epoxy nanocomposites. Progress in Organic Coatings, 2021, 150, 105962.	3.9	21
30	Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environmental Science and Pollution Research, 2021, 28, 8074-8087.	5.3	69
31	Fabrication, mechanical, and electromagnetic studies of cobalt ferrite basedâ€epoxy nanocomposites. Polymer Composites, 2021, 42, 285-296.	4.6	9
32	Chitosan-capped ternary metal selenide nanocatalysts for efficient degradation of Congo red dye in sunlight irradiation. International Journal of Biological Macromolecules, 2021, 167, 169-181.	7.5	105
33	Robust membranes with tunable functionalities for sustainable oil/water separation. Journal of Molecular Liquids, 2021, 321, 114701.	4.9	30
34	Zirconium-Doped Chromium IV Oxide Nanocomposites: Synthesis, Characterization, and Photocatalysis towards the Degradation of Organic Dyes. Catalysts, 2021, 11, 117.	3.5	21
35	Biopolymer-based sorbents for emerging pollutants. , 2021, , 463-491.		5
36	Fabrication strategies for functionalized nanomaterials., 2021,, 55-95.		7

#	Article	IF	Citations
37	Chitosan-based green sorbents for toxic cations removal. , 2021, , 323-352.		3
38	Sustainable management of municipal solid waste to fuel: an overview for a better tomorrow. , 2021, , 289-314.		0
39	Synthesis and physicochemical investigation of imideâ€functionalized silica nanocomposites. Journal of Applied Polymer Science, 2021, 138, 50646.	2.6	3
40	Fabrication, morphological, structural and electrochemical characterization of sulfonated polyimide/clay-based hybrid nanocomposite membranes for energy application. Journal of Polymer Research, 2021, 28, 1.	2.4	6
41	Cover Image, Volume 138, Issue 24. Journal of Applied Polymer Science, 2021, 138, 50733.	2.6	0
42	Degradation of Congo red dye using ternary metal selenide-chitosan microspheres as robust and reusable catalysts. Environmental Technology and Innovation, 2021, 22, 101402.	6.1	41
43	Novel sulfonated polyimide-nafion nanocomposite membranes: Fabrication, morphology and physiochemical investigations for fuel cell applications. Journal of Molecular Structure, 2021, 1231, 129940.	3.6	7
44	Study of Micro/Nano Structuring and Mechanical Properties of KrF Excimer Laser Irradiated Al for Aerospace Industry and Surface Engineering Applications. Materials, 2021, 14, 3671.	2.9	9
45	Synthesis of clayâ€armored coatable sulfonated polyimide nanocomposites as robust polyelectrolyte membranes. Journal of Applied Polymer Science, 2021, 138, 51310.	2.6	5
46	Deployment of metal-organic frameworks as robust materials for sustainable catalysis and remediation of pollutants in environmental settings. Chemosphere, 2021, 272, 129605.	8.2	37
47	Development and characterization of regenerable chitosan-coated nickel selenide nano-photocatalytic system for decontamination of toxic azo dyes. International Journal of Biological Macromolecules, 2021, 182, 866-878.	7.5	48
48	Cover Image, Volume 138, Issue 40. Journal of Applied Polymer Science, 2021, 138, 51419.	2.6	O
49	Mitigation of environmentally hazardous pollutants by magnetically responsive composite materials. Chemosphere, 2021, 276, 130241.	8.2	22
50	Fabrication and characterization of functionally graded vermiculite nanocomposite material: the role of curing on glass transition and thermal stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 21848-21857.	2.2	1
51	Robust bioinspired surfaces and their exploitation for petroleum hydrocarbon remediation. Environmental Science and Pollution Research, 2021, , 1.	5.3	1
52	Effective remediation of petrochemical originated pollutants using engineered materials with multifunctional entities. Chemosphere, 2021, 278, 130405.	8.2	12
53	Effect of Sr ²⁺ doping on the phase transition of BaTiO ₃ lead-free ferroelectric ceramics. Materials Research Express, 2021, 8, 096101.	1.6	0
54	Exploring the role of Black Soldier Fly Larva technology for sustainable management of municipal solid waste in developing countries. Environmental Technology and Innovation, 2021, 24, 101934.	6.1	11

#	Article	IF	CITATIONS
55	Estimation of COVID-19 generated medical waste in the Kingdom of Bahrain. Science of the Total Environment, 2021, 801, 149642.	8.0	34
56	Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. Chemosphere, 2021, 284, 131279.	8.2	48
57	Efficient removal of EDTA-chelated Cu(II) by zero-valent iron and peroxydisulfate: Mutual activation process. Separation and Purification Technology, 2021, 279, 119721.	7.9	19
58	Functionalized polymeric nanomaterials for environmental remediation., 2021,, 3-28.		2
59	Polymer-coated magnetic nanoparticles. , 2021, , 275-292.		1
60	Potential environmental impacts of wind energy development: A global perspective. Current Opinion in Environmental Science and Health, 2020, 13, 85-90.	4.1	90
61	Chitosan-Based Bio-Composite Modified with Thiocarbamate Moiety for Decontamination of Cations from the Aqueous Media. Molecules, 2020, 25, 226.	3.8	69
62	Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme. Science of the Total Environment, 2020, 712, 136482.	8.0	40
63	Rheological properties, structural and thermal elucidation of coal-tar pitches used in the fabrication of multi-directional carbon-carbon composites. Materials Chemistry and Physics, 2020, 242, 122564.	4.0	9
64	Sputtering yield measurements of laser ablated Mg-alloy correlated with surface, structural and mechanical modifications. Optik, 2020, 207, 163866.	2.9	5
65	Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Science of the Total Environment, 2020, 704, 135391.	8.0	75
66	Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. Journal of Environmental Chemical Engineering, 2020, 8, 104364.	6.7	111
67	Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. Journal of Molecular Liquids, 2020, 318, 114273.	4.9	26
68	Silica-based nanomaterials as designer adsorbents to mitigate emerging organic contaminants from water matrices. Journal of Water Process Engineering, 2020, 38, 101675.	5.6	33
69	Adsorption isotherm, kinetics and thermodynamic of acid blue and basic blue dyes onto activated charcoal. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100040.	6.1	41
70	TiO2 Nanoparticles and Epoxy-TiO2 Nanocomposites: A Review of Synthesis, Modification Strategies, and Photocatalytic Potentialities. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4829-4846.	3.7	28
71	Regenerable chitosan-bismuth cobalt selenide hybrid microspheres for mitigation of organic pollutants in an aqueous environment. International Journal of Biological Macromolecules, 2020, 161, 1305-1317.	7.5	50
72	Characterization and Deployment of Surface-Engineered Cobalt Ferrite Nanospheres as Photocatalyst for Highly Efficient Remediation of Alizarin Red S Dye from Aqueous Solution. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 5063-5073.	3.7	36

#	Article	IF	CITATIONS
73	Fabrication and characterization of new ternary ferrites-chitosan nanocomposite for solar-light driven photocatalytic degradation of a model textile dye. Environmental Technology and Innovation, 2020, 20, 101079.	6.1	80
74	Photo-oxidative degradation of organo-functionalized vermiculite clay-reinforced polyimide composites. Applied Nanoscience (Switzerland), 2020, 10, 3725-3733.	3.1	8
75	Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices. Arabian Journal of Chemistry, 2020, 13, 6949-6965.	4.9	22
76	Organically modified micron-sized vermiculite and silica for efficient removal of Alizarin Red S dye pollutant from aqueous solution. Environmental Technology and Innovation, 2020, 19, 101001.	6.1	23
77	Dynamics of oil-water interface demulsification using multifunctional magnetic hybrid and assembly materials. Journal of Molecular Liquids, 2020, 312, 113434.	4.9	47
78	Epoxy Polyamide Composites Reinforced with Silica Nanorods: Fabrication, Thermal and Morphological Investigations. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3869-3877.	3.7	20
79	Selenideâ€chitosan as Highâ€performance Nanophotocatalyst for Accelerated Degradation of Pollutants. Chemistry - an Asian Journal, 2020, 15, 2660-2673.	3.3	46
80	Development and Characterization of Functionalized Titanium Dioxide-Reinforced Sulfonated Copolyimide (SPI/TiO2) Nanocomposite Membranes with Improved Mechanical, Thermal, and Electrochemical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4585-4596.	3.7	15
81	Characterization and deployment of surface-engineered chitosan-triethylenetetramine nanocomposite hybrid nano-adsorbent for divalent cations decontamination. International Journal of Biological Macromolecules, 2020, 152, 663-671.	7. 5	54
82	Photocatalytic Degradation of Congo Red Dye from Aqueous Environment Using Cobalt Ferrite Nanostructures: Development, Characterization, and Photocatalytic Performance. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	114
83	Adsorptive removal of acrylic acid from the aqueous environment using raw and chemically modified alumina: Batch adsorption, kinetic, equilibrium and thermodynamic studies. Journal of Environmental Chemical Engineering, 2020, 8, 103927.	6.7	51
84	Two-dimensional nanosheets functionalized water-borne polyurethane nanocomposites with improved mechanical and anti-corrosion properties. Inorganic and Nano-Metal Chemistry, 2020, 50, 1358-1366.	1.6	15
85	Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation. TrAC - Trends in Analytical Chemistry, 2020, 127, 115902.	11.4	76
86	Chitosanâ€'zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. International Journal of Biological Macromolecules, 2020, 153, 502-512.	7. 5	143
87	Performance evaluation of photolytic and electrochemical oxidation processes for enhanced degradation of food dyes laden wastewater. Water Science and Technology, 2020, 81, 971-984.	2.5	53
88	Photocatalytic Performance of Zinc Ferrite Magnetic Nanostructures for Efficient Eriochrome Black-T Degradation from the Aqueous Environment under Unfiltered Sunlight. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	18
89	Chitosan-based green sorbent material for cations removal from an aqueous environment. Journal of Environmental Chemical Engineering, 2020, 8, 104064.	6.7	48
90	Sorptive removal of malachite green dye by activated charcoal: Process optimization, kinetic, and thermodynamic evaluation. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100025.	6.1	17

#	Article	IF	CITATIONS
91	Fabricating Fe ₂ TiO ₅ hollow microspheres with enhanced visible light photocatalytic activity. Materials Research Express, 2019, 6, 095505.	1.6	2
92	Structural characteristics and electrochemical properties of sulfonated polyimide clay-based composite fabricated by a solution casting method. Journal of Materials Science: Materials in Electronics, 2019, 30, 19164-19172.	2.2	13
93	Environmental impact and pollution-related challenges of renewable wind energy paradigm – A review. Science of the Total Environment, 2019, 683, 436-444.	8.0	156
94	Effect of pH and salinity on stability and dynamic properties of magnetic composite amphiphilic demulsifier molecules at the oil-water interface. Journal of Molecular Liquids, 2019, 290, 111186.	4.9	31
95	Environmental perspectives of interfacially active and magnetically recoverable composite materials $\hat{a} \in \text{``A review. Science of the Total Environment, 2019, 670, 523-538.}$	8.0	76
96	Breast Cancer Classification and Proof of Key Artificial Neural Network Terminologies. , 2019, , .		39
97	Engineering Functionalized Chitosan-Based Sorbent Material: Characterization and Sorption of Toxic Elements. Applied Sciences (Switzerland), 2019, 9, 5138.	2.5	70
98	Immobilization of Lipase on Iron Oxide Organic/Inorganic Hybrid Particles: A Review Article. Reviews on Advanced Materials Science, 2018, 53, 106-117.	3.3	13
99	Morphological, elemental and hardness analysis of femtosecond laser irradiated Al targets. Optics and Laser Technology, 2018, 108, 107-115.	4.6	8
100	Nanostructuring of zirconium by femtosecond laser irradiation in the ambient environment of air and ethanol. Optik, 2017, 134, 149-160.	2.9	14
101	Study of variation in surface morphology, chemical composition, crystallinity and hardness of laser irradiated silver in dry and wet environments. Optics and Laser Technology, 2017, 92, 173-181.	4.6	7
102	Femtosecond laser induced nanostructuring of zirconium in liquid confined environment. Chinese Physics B, 2017, 26, 015204.	1.4	15
103	Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk–shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Enzyme and Microbial Technology, 2017, 103, 42-52.	3.2	45
104	Synthesis and characterization of thermally evaporated copper bismuth sulphide thin films. Surface and Coatings Technology, 2017, 320, 404-408.	4.8	21
105	Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe ₃ O ₄ @KCC-1) and their application in immobilization of lipase from Candida rugosa with enhanced catalytic activity and stability. New Journal of Chemistry, 2017, 41, 8222-8231.	2.8	33
106	Facile Fabrication of Fe3O4–Polymer Anisotropic Magnetic Particles and Applications. , 2017, , 179-231.		0
107	Surface, structural and mechanical properties of zirconium ablated by KrF excimer laser radiation. Quantum Electronics, 2016, 46, 1015-1022.	1.0	7
108	Synthesis, preparation of micro/nanofibers by electrospinning and surface morphology of PS. , 2016, , .		0

#	Article	IF	CITATIONS
109	Papain/Zn ₃ (PO ₄) ₂ hybrid nanoflower: preparation, characterization and its enhanced catalytic activity as an immobilized enzyme. RSC Advances, 2016, 6, 46702-46710.	3.6	79
110	Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 129-135.	1.8	47
111	Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti. Chinese Physics B, 2016, 25, 018101.	1.4	6
112	Effect of crosslinking degree and thickness of thermosensitive imprinted layers on recognition and elution efficiency of protein imprinted magnetic microspheres. Sensors and Actuators B: Chemical, 2016, 225, 436-445.	7.8	47
113	Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chemical Engineering Journal, 2016, 291, 287-297.	12.7	166
114	Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Applied Surface Science, 2016, 366, 328-338.	6.1	59
115	Monodispers and Multifunctional Magnetic Composite Core Shell Microspheres for Demulsification Applications. Journal of the Chinese Chemical Society, 2015, 62, 695-702.	1.4	33
116	Fabrication of a Fe ₃ O ₄ @SiO ₂ @mSiO ₂ -HPG-COOH-Pd(0) supported catalyst and its performance in catalyzing the Suzuki cross-coupling reaction. New Journal of Chemistry, 2015, 39, 2767-2777.	2.8	24
117	Interfacially active and magnetically responsive composite nanoparticles with raspberry like structure; synthesis and its applications for heavy crude oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472, 38-49.	4.7	84
118	Magnetic microcapsules with inner asymmetric structure: Controlled preparation, mechanism, and application to drug release. Chemical Engineering Journal, 2015, 275, 235-244.	12.7	22
119	Effect of laser pulses on the surface and structural modification of ablated titanium in a liquid-confined environment. Radiation Effects and Defects in Solids, 2015, 170, 121-129.	1.2	1
120	Iron oxide-based polymeric magnetic microspheres with a core shell structure: from controlled synthesis to demulsification applications. Journal of Polymer Research, 2015, 22, 1.	2.4	33
121	Generalized Approach for Fabricating Monodisperse Anisotropic Microparticles via Single-Hole Swelling PGMA Seed Particles. Macromolecules, 2015, 48, 7592-7603.	4.8	55
122	Polymer melt flow through nanochannels: from theory and fabrication to application. RSC Advances, 2015, 5, 7160-7172.	3.6	11
123	Novel Janus magnetic micro particle synthesis and its applications as a demulsifier for breaking heavy crude oil and water emulsion. Fuel, 2015, 141, 258-267.	6.4	111
124	Effect of excimer laser fluence on the surface structuring of Ti under vacuum condition. Journal of Laser Applications, 2014, 26, 022003.	1.7	5
125	Key synthesis of magnetic Janus nanoparticles using a modified facile method. Particuology, 2014, 17, 59-65.	3.6	27
126	Synthesis of P (MMA-co-AA-co-DVB) Fe < inf > 3 < / inf > 0 < inf > 4 < / inf > / magnetic composite nanoparticles. , 2014, , .		1

#	Article	IF	CITATIONS
127	Effect of ion irradiation on the surface, structural and mechanical properties of brass. Nuclear Instruments & Methods in Physics Research B, 2014, 325, 5-10.	1.4	29
128	One-pot synthesis of a composite of monodispersed CuO nanospheres on carbon nanotubes as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 574, 221-226.	5.5	40
129	Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma. Plasma Science and Technology, 2013, 15, 666-672.	1.5	23
130	Effect of dry and wet ambient environment on the pulsed laser ablation of titanium. Applied Surface Science, 2013, 270, 49-57.	6.1	60
131	SEM, AFM, EDX and XRD analysis of laser ablated Ti in nonreactive and reactive ambient environments. Surface and Coatings Technology, 2013, 235, 297-302.	4.8	32
132	PREPARATION OF FLOWER-LIKE <pre>FLOWER-LIKE<pre>FLOWER-LIKE</pre>FLOWER-LIKE</pre> FLOWER-LIKE <td>t>0<td>:> {sub>4</td></td>	t>0 <td>:> {sub>4</td>	:> {sub>4
133	Effect of ambient environment on excimer laser induced micro and nano-structuring of stainless steel. Applied Surface Science, 2012, 261, 101-109.	6.1	37
134	Interfacial and Demulsification Properties of Janus Type Magnetic Nanoparticles. Advanced Materials Research, 0, 1105, 264-268.	0.3	2