Stephane Manenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4690465/publications.pdf Version: 2024-02-01

STEDHANE MANENTI

#	Article	IF	CITATIONS
1	p27 controls autophagic vesicle trafficking in glucose-deprived cells via the regulation of ATAT1-mediated microtubule acetylation. Cell Death and Disease, 2021, 12, 481.	6.3	63
2	Inhibition of ubiquitin-specific protease 7 sensitizes acute myeloid leukemia to chemotherapy. Leukemia, 2021, 35, 417-432.	7.2	22
3	STAT5-dependent regulation of CDC25A by miR-16 controls proliferation and differentiation in FLT3-ITD acute myeloid leukemia. Scientific Reports, 2020, 10, 1906.	3.3	6
4	Cytoplasmic p27 ^{Kip1} promotes tumorigenesis via suppression of RhoB activity. Journal of Pathology, 2019, 247, 60-71.	4.5	8
5	Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia. Oncogene, 2018, 37, 787-797.	5.9	82
6	A PIM-CHK1 signaling pathway regulates PLK1 phosphorylation and function during mitosis. Journal of Cell Science, 2018, 131, .	2.0	7
7	p27Kip1 regulates the microtubule bundling activity of PRC1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1630-1639.	4.1	11
8	CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability. Oncogene, 2017, 36, 3781-3788.	5.9	39
9	Targeting ATR/CHK1 pathway in acute myeloid leukemia to overcome chemoresistance. Molecular and Cellular Oncology, 2017, 4, e1289293.	0.7	3
10	p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway. ELife, 2017, 6, .	6.0	41
11	p57Kip2knock-in mouse reveals CDK-independent contribution in the development of Beckwith-Wiedemann syndrome. Journal of Pathology, 2016, 239, 250-261.	4.5	13
12	Phosphorylation of CDC25A on SER283 in late S/G2 by CDK/cyclin complexes accelerates mitotic entry. Cell Cycle, 2016, 15, 2742-2752.	2.6	11
13	Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood, 2016, 127, 882-892.	1.4	108
14	CHK1 as a therapeutic target to bypass chemoresistance in AML. Science Signaling, 2016, 9, ra90.	3.6	73
15	Antileukemic Activity of 2-Deoxy- <scp>d</scp> -Glucose through Inhibition of N-Linked Glycosylation in Acute Myeloid Leukemia with <i>FLT3-ITD</i> or <i>c-KIT</i> Mutations. Molecular Cancer Therapeutics, 2015, 14, 2364-2373.	4.1	52
16	CDC25A governs proliferation and differentiation of FLT3-ITD acute myeloid leukemia. Oncotarget, 2015, 6, 38061-38078.	1.8	20
17	Targeting CHK1 inhibits cell proliferation in FLT3-ITD positive acute myeloid leukemia. Leukemia Research, 2014, 38, 1342-1349.	0.8	20
18	Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia. Leukemia, 2014, 28, 293-301.	7.2	27

#	Article	IF	CITATIONS
19	845: The ROS/SUMO axis is involved in acute myeloid leukemia (AML) cells response to chemotherapeutic drugs and constitutes a potential target to overcome chemoresistance in AML. European Journal of Cancer, 2014, 50, S205-S206.	2.8	0
20	The ROS/SUMO Axis Contributes to the Response of Acute Myeloid Leukemia Cells to Chemotherapeutic Drugs. Cell Reports, 2014, 7, 1815-1823.	6.4	86
21	Abstract 1336: Bortezomib induces the degradation of FLT3-ITD tyrosine kinase in acute myeloid leukemia through an autophagy-dependent mechanism. , 2014, , .		0
22	Abstract 2678: All-trans-retinoic acid as a new therapeutic approach to target isocitrate dehydrogenase mutations in acute myeloid leukemia. , 2014, , .		0
23	Abstract 5482: Antileukemic activity of 2-deoxy-d-glucose in acute myeloid leukemia. , 2014, , .		0
24	Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1 transcription. Blood, 2013, 122, 738-748.	1.4	53
25	Doxorubicin promotes transcriptional upregulation of Cdc25B in cancer cells by releasing Sp1 from the promoter. Oncogene, 2013, 32, 5123-5128.	5.9	12
26	Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells. Leukemia, 2013, 27, 2129-2138.	7.2	108
27	The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors. Leukemia, 2013, 27, 325-335.	7.2	17
28	Cytosine Arabinoside Chemotherapy Does Not Enrich For Leukemic Stem Cells In Xenotransplantation Model Of Human Acute Myeloid Leukemia. Blood, 2013, 122, 1651-1651.	1.4	2
29	Evaluation of checkpoint kinase targeting therapy in Acute Myeloid Leukemia with complex karyotype. Cancer Biology and Therapy, 2012, 13, 307-313.	3.4	17
30	The cell cycle regulator CDC25A is a target for JAK2V617F oncogene. Blood, 2012, 119, 1190-1199.	1.4	34
31	High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica, 2011, 96, 1792-1798.	3.5	164
32	Abstract 3130: The short form of the receptor tyrosine kinase Ron is expressed in acute myeloid leukemia, regulated by methylation and sensitizes leukemic cells to c-Met inhibitors. , 2011, , .		0
33	A functional link between Polo-like kinase 1 and the mammalian Target-Of-Rapamycin pathway?. Cell Cycle, 2010, 9, 1690-1696.	2.6	26
34	R23: L'oncogène JAK2 V617F induit une dérégulation de CDC25A, phosphatase clé du cycle cellulaire, dans la maladie de Vaquez. Bulletin Du Cancer, 2010, 97, S25.	1.6	0
35	Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: A correlation with the proteasome status. Leukemia Research, 2010, 34, 498-506.	0.8	35
36	R54: Activité de l'inhibiteur sélectif de la sous-unité p110 alpha de la PI3-kinase dans les leucémies ai myéloÃ⁻des. Bulletin Du Cancer, 2010, 97, S36.	iguës 1.6	0

#	Article	IF	CITATIONS
37	R8 – Oral Un rÃ1e pour l'inhibition de la sumoylation par les ROS dans la chimiorésistance des leucémies aiguës myéloÃ⁻des ?. Bulletin Du Cancer, 2010, 97, S19.	1.6	0
38	R88: Impact du nombre de cellules leucémiques chimiorésistantes CD34+CD38-CD123+ sur la réponse au traitement et la survie de patients atteints de leucémie aiguë myéloÃ⁻de. Bulletin Du Cancer, 2010, 97, S49.	1.6	0
39	R18: Expression, rÃ1e et régulation épigénétique de la forme courte de Ron dans les leucémies aiguë myéloÃ ⁻ des (LAM). Bulletin Du Cancer, 2010, 97, S23.	^S 1.6	0
40	Upregulation of the CDC25A phosphatase downstream of the NPM/ALK oncogene participates in anaplastic large cell lymphoma enhanced proliferation. Cell Cycle, 2009, 8, 1373-1379.	2.6	20
41	Constitutive Activation of the DNA Damage Signaling Pathway in Acute Myeloid Leukemia with Complex Karyotype: Potential Importance for Checkpoint Targeting Therapy. Cancer Research, 2009, 69, 8652-8661.	0.9	67
42	A caspase-dependent cleavage of CDC25A generates an active fragment activating cyclin-dependent kinase 2 during apoptosis. Cell Death and Differentiation, 2009, 16, 208-218.	11.2	24
43	Polo-like kinase 1 is overexpressed in acute myeloid leukemia and its inhibition preferentially targets the proliferation of leukemic cells. Blood, 2009, 114, 659-662.	1.4	127
44	G2/M checkpoint stringency is a key parameter in the sensitivity of AML cells to genotoxic stress. Oncogene, 2008, 27, 3811-3820.	5.9	40
45	CDC25A: A Rebel Within the CDC25 Phosphatases Family?. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 825-831.	1.7	36
46	Expression of Î ² -catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia, 2006, 20, 1211-1216.	7.2	172
47	A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene, 2006, 25, 3113-3122.	5.9	135
48	Cell Adhesion Regulates CDC25A Expression and Proliferation in Acute Myeloid Leukemia. Cancer Research, 2006, 66, 7128-7135.	0.9	43
49	Emerging roles of phosphatidylinositol monophosphates in cellular signaling and trafficking. Advances in Enzyme Regulation, 2005, 45, 201-214.	2.6	33
50	Integrin Function and Signaling as Pharmacological Targets in Cardiovascular Diseases and in Cancer. Current Pharmaceutical Design, 2005, 11, 2119-2134.	1.9	17
51	Myristoylated alanine-rich C kinase substrate (MARCKS) is involved in myoblast fusion through its regulation by protein kinase Cα and calpain proteolytic cleavage. Biochemical Journal, 2004, 382, 1015-1023.	3.7	43
52	MAP Kinase-dependent Degradation of p27Kip1 by Calpains in Choroidal Melanoma Cells. Journal of Biological Chemistry, 2003, 278, 12443-12451.	3.4	49
53	Cell adhesion protects c-Raf-1 against ubiquitin-dependent degradation by the proteasome. Biochemical and Biophysical Research Communications, 2002, 294, 976-980.	2.1	14
54	The p42/p44 Mitogen-activated Protein Kinase Activation Triggers p27Kip1 Degradation Independently of CDK2/Cyclin E in NIH 3T3 Cells. Journal of Biological Chemistry, 2001, 276, 34958-34965.	3.4	55

STEPHANE MANENTI

#	Article	IF	CITATIONS
55	Adenovirus-Mediated Suicide Gene Transduction: Feasibility in Lens Epithelium and in Prevention of Posterior Capsule Opacification in Rabbits. Human Gene Therapy, 1999, 10, 2365-2372.	2.7	30
56	Flavonoids and the inhibition of PKC and PI 3-kinase. General Pharmacology, 1999, 32, 279-286.	0.7	226
57	Retrovirus-mediated transfer of a suicide gene into lens epithelial cells in vitro and in an experimental model of posterior capsule opacification. Current Eye Research, 1999, 19, 472-482.	1.5	23
58	Regulation by Transforming Growth Factor-β1 of G1 Cyclin-Dependent Kinases in Human Retinal Epithelial Cells. Experimental Eye Research, 1999, 68, 193-199.	2.6	12
59	Phosphorylation of the myristoylated protein kinase C substrate MARCKS by the cyclin E‒cyclin-dependent kinase 2 complex in vitro. Biochemical Journal, 1999, 340, 775.	3.7	3
60	G1 phase arrest by the phosphatidylinositol 3â€kinase inhibitor LY 294002 is correlated to upâ€regulation of p27 ^{Kip1} and inhibition of G1 CDKs in choroidal melanoma cells. FEBS Letters, 1998, 422, 385-390.	2.8	67
61	Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition. Biochemical Pharmacology, 1997, 53, 1649-1657.	4.4	504
62	The major myristoylated PKC substrate (MARCKS) is involved in cell spreading, tyrosine phosphorylation of paxillin, and focal contact formation. FEBS Letters, 1997, 419, 95-98.	2.8	24
63	Specific proteolytic cleavage of the myristoylated alanine-rich C kinase substrate between Asn 147 and Glu 148 also occurs in brain. , 1997, 48, 259-263.		7
64	Myristoylation Does Not Modulate the Properties of MARCKS-related Protein (MRP) in Solution. Journal of Biological Chemistry, 1996, 271, 26794-26802.	3.4	39
65	Demyristoylation of myristoylated alanine-rich C kinase substrate. Biochemical Society Transactions, 1995, 23, 561-564.	3.4	13
66	The Myristoyl Moiety of Myristoylated Alanine-rich C Kinase Substrate (MARCKS) and MARCKS-related Protein Is Embedded in the Membrane. Journal of Biological Chemistry, 1995, 270, 19879-19887.	3.4	73
67	The effect of tunicamycin on the protease activity of GP63 from Leishmania major. Molecular Biology Reports, 1992, 16, 81-84.	2.3	4
68	Biochemical evidence of the antigenic cell surface heterogeneity ofLeishmania mexicana. Zeitschrift Für Parasitenkunde (Berlin, Germany), 1990, 76, 301-305.	0.8	4
69	Fatty acid acylation of lens fiber plasma membrane proteins. FEBS Letters, 1990, 262, 356-358.	2.8	9
70	High-performance liquid chromatography of the main polypeptide (MP26) of lens fiber plasma membranes solubilized with n -octyl Î ² -D-glucopyranoside. FEBS Letters, 1988, 233, 148-152.	2.8	15
71	Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers Journal of Cell Biology, 1987, 105, 1679-1689.	5.2	63
72	Dilemmas of the structural and biochemical organization of lens membranes during differentiation and aging. Current Eye Research, 1985, 4, 1219-1234.	1.5	15