
Stella Kourembanas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4689787/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Antenatal Mesenchymal Stromal Cell Extracellular Vesicle Therapy Prevents Preeclamptic Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 86-95.	2.9	24
2	Urine Proteomics for Noninvasive Monitoring of Biomarkers in Bronchopulmonary Dysplasia. Neonatology, 2022, 119, 193-203.	2.0	12
3	Antenatal mesenchymal stromal cell extracellular vesicle treatment preserves lung development in a model of bronchopulmonary dysplasia due to chorioamnionitis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L179-L190.	2.9	12
4	Diagnosis and management of pulmonary hypertension in infants with bronchopulmonary dysplasia. Seminars in Fetal and Neonatal Medicine, 2022, 27, 101351.	2.3	18
5	Pulmonary hypertension in bronchopulmonary dysplasia. Pediatric Research, 2021, 89, 446-455.	2.3	103
6	Mesenchymal stromal cell-derived extracellular vesicle therapy prevents preeclamptic physiology through intrauterine immunomodulationâ€. Biology of Reproduction, 2021, 104, 457-467.	2.7	16
7	Therapeutic Effects of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles in Oxygen-Induced Multi-Organ Disease: A Developmental Perspective. Frontiers in Cell and Developmental Biology, 2021, 9, 647025.	3.7	11
8	Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Frontiers in Immunology, 2021, 12, 640595.	4.8	17
9	Intratracheal transplantation of trophoblast stem cells attenuates acute lung injury in mice. Stem Cell Research and Therapy, 2021, 12, 487.	5.5	1
10	Extracellular Vesicles Protect the Neonatal Lung from Hyperoxic Injury through the Epigenetic and Transcriptomic Reprogramming of Myeloid Cells. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1418-1432.	5.6	36
11	Heme oxygenase-1 dampens the macrophage sterile inflammasome response and regulates its components in the hypoxic lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L125-L134.	2.9	16
12	Gene and Stem Cell Therapies for Fetal Care. JAMA Pediatrics, 2020, 174, 985.	6.2	11
13	Mesenchymal stromal cellâ€derived small extracellular vesicles restore lung architecture and improve exercise capacity in a model of neonatal hyperoxiaâ€induced lung injury. Journal of Extracellular Vesicles, 2020, 9, 1790874.	12.2	57
14	Echocardiographic markers of pulmonary hemodynamics and right ventricular hypertrophy in rat models of pulmonary hypertension. Pulmonary Circulation, 2020, 10, 1-10.	1.7	11
15	Therapeutic Extracellular Vesicles from Mesenchymal Stromal Cells: Can they help us restore lung development and evade BPD?. FASEB Journal, 2020, 34, 1-1.	0.5	1
16	Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension. , 2019, , 131-152.		15
17	Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 2019, 4, .	5.0	144
18	Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 104-116.	5.6	450

#	Article	IF	CITATIONS
19	Impaired Pulmonary Arterial Vasoconstriction and Nitric Oxide–Mediated Relaxation Underlie Severe Pulmonary Hypertension in the Sugen-Hypoxia Rat Model. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 258-274.	2.5	24
20	Reply to Muraca et al.: Exosome Treatment of Bronchopulmonary Dysplasia: How Pure Should Your Exosome Preparation Be?. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 970-970.	5.6	3
21	Macrophage Immunomodulation: The Gatekeeper for Mesenchymal Stem Cell Derived-Exosomes in Pulmonary Arterial Hypertension?. International Journal of Molecular Sciences, 2018, 19, 2534.	4.1	49
22	"Good things come in small packages― application of exosome-based therapeutics in neonatal lung injury. Pediatric Research, 2018, 83, 298-307.	2.3	48
23	Can We Cure Bronchopulmonary Dysplasia?. Journal of Pediatrics, 2017, 191, 12-14.	1.8	11
24	Therapeutic Applications of Extracellular Vesicles: Perspectives from Newborn Medicine. Methods in Molecular Biology, 2017, 1660, 409-432.	0.9	26
25	Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Frontiers in Cardiovascular Medicine, 2017, 4, 63.	2.4	180
26	Stem cell–based therapies for the newborn lung and brain: Possibilities and challenges. Seminars in Perinatology, 2016, 40, 138-151.	2.5	64
27	Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates <i>Aspergillus</i> Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 1302-1316.	3.3	191
28	Exosomes: Vehicles of Intercellular Signaling, Biomarkers, and Vectors of Cell Therapy. Annual Review of Physiology, 2015, 77, 13-27.	13.1	579
29	Expanding the Pool of Stem Cell Therapy for Lung Growth and Repair. Circulation, 2014, 129, 2091-2093.	1.6	6
30	The Sugen 5416/Hypoxia Mouse Model of Pulmonary Hypertension Revisited: Longâ€Term Followâ€Up. Pulmonary Circulation, 2014, 4, 619-629.	1.7	113
31	Stem Cell-Based Therapy for Newborn Lung and Brain Injury: Feasible, Safe, and the Next Therapeutic Breakthrough?. Journal of Pediatrics, 2014, 164, 954-956.	1.8	19
32	An Argonaute 2 switch regulates circulating miR-210 to coordinate hypoxic adaptation across cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2528-2542.	4.1	48
33	Cell Therapy for Lung Diseases. Report from an NIH–NHLBI Workshop, November 13–14, 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 370-375.	5.6	29
34	Mesenchymal Stem Cellâ€Mediated Reversal of Bronchopulmonary Dysplasia and Associated Pulmonary Hypertension. Pulmonary Circulation, 2012, 2, 170-181.	1.7	184
35	Exosomes Mediate the Cytoprotective Action of Mesenchymal Stromal Cells on Hypoxia-Induced Pulmonary Hypertension. Circulation, 2012, 126, 2601-2611.	1.6	686
36	Bone Marrow Stromal Cells Attenuate Lung Injury in a Murine Model of Neonatal Chronic Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1122-1130.	5.6	452

STELLA KOUREMBANAS

#	Article	IF	CITATIONS
37	Hypoxia and Carbon Monoxide in the Vasculature. Antioxidants and Redox Signaling, 2002, 4, 291-299.	5.4	49
38	Prevention of Hypoxia-Induced Pulmonary Hypertension by Enhancement of Endogenous Heme Oxygenase-1 in the Rat. Circulation Research, 2000, 86, 1224-1229.	4.5	198
39	Endothelin-1 Production during the Acute Chest Syndrome in Sickle Cell Disease. American Journal of Respiratory and Critical Care Medicine, 1997, 156, 280-285.	5.6	106
40	Persistent Pulmonary Hypertension of the Newborn: Role of Nitric Oxide. Journal of Intensive Care Medicine, 1995, 10, 270-282.	2.8	0
41	Immortalization of human endothelial cells by murine sarcoma viruses, without morphologic transformation. Journal of Cellular Physiology, 1988, 134, 47-56.	4.1	32
42	Endothelial Cells Synthesize Basic Fibroblast Growth Factor and Transforming Growth Factor Beta. Growth Factors, 1988, 1, 7-17.	1.7	119
43	Increases in the 35kDa surfactant-associated protein and its mRNA followingin vivo dexamethasone treatment of fetal and neonatal rats. Electrophoresis, 1987, 8, 235-238.	2.4	48