Arthur Gutierrez-Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/468977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Intracellular Delivery of Trastuzumab Using Designer Phage Lambda Nanoparticles Alters Cellular Programs in Human Breast Cancer Cells. ACS Nano, 2021, 15, 11789-11805.	14.6	18
2	ETS transcription factor ESE-1/Elf3 is an independent prognostic factor of survival in HR+HER2+ breast cancer patients. Breast Cancer Research and Treatment, 2020, 182, 601-612.	2.5	7
3	ETV6 germline mutations cause HDAC3/NCOR2 mislocalization and upregulation of interferon response genes. JCI Insight, 2020, 5, .	5.0	15
4	Ultrasound-mediated delivery of siESE complexed with microbubbles attenuates HER2+/- cell line proliferation and tumor growth in rodent models of breast cancer. Nanotheranostics, 2019, 3, 212-222.	5.2	15
5	Consider the context: Ras/ERK and PI3K/AKT/mTOR signaling outcomes are pituitary cell type-specific. Molecular and Cellular Endocrinology, 2018, 463, 87-96.	3.2	32
6	The Balance of PI3K and ERK Signaling Is Dysregulated in Prolactinoma and Modulated by Dopamine. Endocrinology, 2018, 159, 2421-2434.	2.8	17
7	Pituitary somatolactotropes evade an oncogenic response to Ras. Molecular and Cellular Endocrinology, 2018, 476, 165-172.	3.2	0
8	ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget, 2017, 8, 16951-16963.	1.8	82
9	ESE-1/ELF3 mRNA expression associates with poor survival outcomes in HER2+ breast cancer patients and is critical for tumorigenesis in HER2+ breast cancer cells. Oncotarget, 2017, 8, 69622-69640.	1.8	14
10	ESE-1 Knockdown Attenuates Growth in Trastuzumab-resistant HER2+ Breast Cancer Cells. Anticancer Research, 2017, 37, 6583-6591.	1.1	8
11	High Efficiency Molecular Delivery with Sequential Low-Energy Sonoporation Bursts. Theranostics, 2015, 5, 1419-1427.	10.0	25
12	Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nature Genetics, 2015, 47, 535-538.	21.4	274
13	Signaling Pathways Regulating Pituitary Lactotrope Homeostasis and Tumorigenesis. Advances in Experimental Medicine and Biology, 2015, 846, 37-59.	1.6	15
14	Abstract 1971: ESE-1 controls transformation properties in HER2+ breast cancer cells, and predicts poor prognostic status and survival in breast cancer patients. , 2015, , .		0
15	Persistent ERK/MAPK Activation Promotes Lactotrope Differentiation and Diminishes Tumorigenic Phenotype. Molecular Endocrinology, 2014, 28, 1999-2011.	3.7	21
16	Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 522-543.	5.2	113
17	Control of MicroRNA-21 Expression in Colorectal Cancer Cells by Oncogenic Epidermal Growth Factor/Ras Signaling and Ets Transcription Factors. DNA and Cell Biology, 2012, 31, 1403-1411.	1.9	20
18	Mapping of ESE-1 subdomains required to initiate mammary epithelial cell transformation via a cytoplasmic mechanism. Molecular Cancer, 2011, 10, 103.	19.2	19

#	Article	IF	CITATIONS
19	Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression. Molecular Cancer, 2011, 10, 75.	19.2	49
20	CEBPD Suppresses Prolactin Expression and Prolactinoma Cell Proliferation. Molecular Endocrinology, 2011, 25, 1880-1891.	3.7	21
21	Benign mammary epithelial cells enhance the transformed phenotype of human breast cancer cells. BMC Cancer, 2010, 10, 373.	2.6	16
22	MicroRNAs Regulate Pituitary Development, and MicroRNA 26b Specifically Targets Lymphoid Enhancer Factor 1 (Lef-1), Which Modulates Pituitary Transcription Factor 1 (Pit-1) Expression. Journal of Biological Chemistry, 2010, 285, 34718-34728.	3.4	85
23	A Pit-1 Threonine 220 Phosphomimic Reduces Binding to Monomeric DNA Sites to Inhibit Ras and Estrogen Stimulation of the Prolactin Gene Promoter. Molecular Endocrinology, 2010, 24, 91-103.	3.7	15
24	The vanishing physician-scientist?. Journal of Clinical Investigation, 2010, 120, 1367-1367.	8.2	4
25	ESE-1 is Required to Maintain the Transformed Phenotype of MCF-7 and ZR-75-1 Human Breast Cancer Cells. The Open Cancer Journal, 2010, 3, 77-88.	0.2	12
26	Abstract 3298: Elf3 as negative regulation for epithelial-mesenchymal transition in ovarian cancer. , 2010, , .		0
27	Distinct Genetic Alterations in the Mitogen-Activated Protein Kinase Pathway Dictate Sensitivity of Thyroid Cancer Cells to Mitogen-Activated Protein Kinase Kinase 1/2 Inhibition. Thyroid, 2009, 19, 825-835.	4.5	29
28	The 26-Amino Acid ß-Motif of the Pit-1ß Transcription Factor Is a Dominant and Independent Repressor Domain. Molecular Endocrinology, 2009, 23, 1371-1384.	3.7	20
29	The Ets dominant repressor En/Erm enhances intestinal epithelial tumorigenesis in ApcMin mice. BMC Cancer, 2009, 9, 197.	2.6	5
30	Ets Transcription Factors Control Epithelial Maturation and Transit and Crypt-Villus Morphogenesis in the Mammalian Intestine. American Journal of Pathology, 2009, 174, 1280-1290.	3.8	12
31	Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histology and Histopathology, 2008, 23, 1417-24.	0.7	39
32	Differential Utilization of Transcription Activation Subdomains by Distinct Coactivators Regulates Pit-1 Basal and Ras Responsiveness. Molecular Endocrinology, 2007, 21, 172-185.	3.7	12
33	ETS transcription factors in endocrine systems. Trends in Endocrinology and Metabolism, 2007, 18, 150-158.	7.1	116
34	Pit-1β reduces transcription and CREB-binding protein recruitment in a DNA context-dependent manner. Journal of Endocrinology, 2005, 185, 173-185.	2.6	12
35	Structural and Functional Analysis of the Differential Effects of c-Jun and v-Jun on Prolactin Gene Expression. Molecular Endocrinology, 2004, 18, 2479-2490.	3.7	1
36	The ETS Transcription Factor ESE-1 Transforms MCF-12A Human Mammary Epithelial Cells via a Novel Cytoplasmic Mechanism. Molecular and Cellular Biology, 2004, 24, 5548-5564.	2.3	54

#	Article	IF	CITATIONS
37	ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mammary epithelial cells. Oncogene, 2004, 23, 1766-1779.	5.9	56
38	Transcriptional Control of the Cell Cycle in Mammary Gland Development and Tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 39-53.	2.7	31
39	Selective Repression of Rat Prolactin Gene by Stable Expression of Dominant-Negative Ets in GH4 Pituitary Cells. Endocrine, 2003, 20, 3-12.	2.2	7
40	The Epithelial-Specific ETS Transcription Factor ESX/ESE-1/Elf-3 Modulates Breast Cancer-Associated Gene Expression. DNA and Cell Biology, 2003, 22, 79-94.	1.9	45
41	Purification and Mass Spectrometric Identification of GA-binding Protein (GABP) as the Functional Pituitary Ets Factor Binding to the Basal Transcription Element of the Prolactin Promoter. Journal of Biological Chemistry, 2003, 278, 16863-16872.	3.4	27
42	Ras Signaling and Transcriptional Synergy at a Flexible Ets-1/Pit-1 Composite DNA Element Is Defined by the Assembly of Selective Activation Domains. Journal of Biological Chemistry, 2003, 278, 39684-39696.	3.4	20
43	Role of Specific Protein Kinase C Isozymes in Mediating Epidermal Growth Factor, Thyrotropin-Releasing Hormone, and Phorbol Ester Regulation of the Rat Prolactin Promoter in GH4/GH4C1 Pituitary Cells. Molecular Endocrinology, 2002, 16, 2840-2852.	3.7	24
44	Editorial: PRL-Releasing Peptide Stimulation of PRL Gene Transcription—Enter AKT. Endocrinology, 2002, 143, 11-12.	2.8	9
45	Structural characterization of the PIT-1/ETS-1 interaction: PIT-1 phosphorylation regulates PIT-1/ETS-1 binding. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12657-12662.	7.1	29
46	Pituitary Ets-1 and GABP bind to the growth factor regulatory sites of the rat prolactin promoter. Nucleic Acids Research, 2001, 29, 1251-1260.	14.5	19
47	LZ-FYVE: A Novel Developmental Stage-Specific Leucine Zipper, FYVE-Finger Protein. DNA and Cell Biology, 2001, 20, 403-412.	1.9	10
48	The Pit-1 Homeodomain and β-Domain Interact with Ets-1 and Modulate Synergistic Activation of the Rat Prolactin Promoter. Journal of Biological Chemistry, 2000, 275, 3100-3106.	3.4	50
49	The Pit-1β Domain Dictates Active Repression and Alteration of Histone Acetylation of the Proximal Prolactin Promoter. Journal of Biological Chemistry, 2000, 275, 30977-30986.	3.4	27
50	Ets Transcription Factors. , 2000, , 39-65.		1
51	Reconstitution of the Protein Kinase A Response of the Rat Prolactin Promoter: Differential Effects of Distinct Pit-1 Isoforms and Functional Interaction with Oct-1. Molecular Endocrinology, 1999, 13, 228-238.	3.7	26
52	Transforming Growth Factor-beta1 Inhibits Rat Prolactin Promoter Activity in GH4Neuroendocrine Cells. DNA and Cell Biology, 1999, 18, 863-873.	1.9	10
53	Reconstitution of the Protein Kinase A Response of the Rat Prolactin Promoter: Differential Effects of Distinct Pit-1 Isoforms and Functional Interaction with Oct-1. Molecular Endocrinology, 1999, 13, 228-238.	3.7	8
54	Ets transcription factors: nuclear effectors of the Ras–MAP-kinase signaling pathway. Trends in Biochemical Sciences, 1998, 23, 213-216.	7.5	473

#	Article	IF	CITATIONS
55	Functional Components of Fibroblast Growth Factor (FGF) Signal Transduction in Pituitary Cells. Journal of Biological Chemistry, 1997, 272, 30852-30859.	3.4	37
56	Lipopolysaccharide and Raf-1 Kinase Regulate Secretory Interleukin-1 Receptor Antagonist Gene Expression by Mutually Antagonistic Mechanisms. Molecular and Cellular Biology, 1997, 17, 1118-1128.	2.3	20
57	Interaction of Ets-1 and the POU-Homeodomain Protein CHF-1/Pit-1 Reconstitutes Pituitary-Specific Gene Expression. Molecular and Cellular Biology, 1997, 17, 1065-1074.	2.3	105
58	Conserved mechanisms of Ras regulation of evolutionary related transcription factors, Ets1 and Pointed P2. Oncogene, 1997, 14, 899-913.	5.9	95
59	Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage. Journal of Cellular Biochemistry, 1997, 65, 325-339.	2.6	78
60	Elucidation of Homeoprotein Cartâ€1 Function during <i>In Vitro</i> Chondrogenesis of C3H10T1/2 Micromass Cultures. Annals of the New York Academy of Sciences, 1996, 785, 206-208.	3.8	6
61	Human Cart-1: Structural Organization, Chromosomal Localization, and Functional Analysis of a Cartilage-Specific Homeodomain cDNA. DNA and Cell Biology, 1996, 15, 531-541.	1.9	26
62	The c-Jun δ-Domain Inhibits Neuroendocrine Promoter Activity in a DNA Sequence- and Pituitary-specific Manner. Journal of Biological Chemistry, 1996, 271, 17139-17146.	3.4	22
63	GHF-1/Pit-1 Functions as a Cell-specific Integrator of Ras Signaling by Targeting the Ras Pathway to a Composite Ets-1/GHF-1 Response Element. Journal of Biological Chemistry, 1996, 271, 24639-24648.	3.4	56
64	A 26-Amino Acid Insertion Domain Defines a Functional Transcription Switch Motif in Pit-1β. Journal of Biological Chemistry, 1996, 271, 28925-28932.	3.4	23
65	Epidermal Growth Factor and Ras Regulate Gene Expression in GH4 Pituitary Cells by Separate, Antagonistic Signal Transduction Pathways. Molecular and Cellular Biology, 1995, 15, 6777-6784.	2.3	22
66	Functional Interaction of c-Ets-1 and GHF-1/Pit-1 Mediates Ras Activation of Pituitary-Specific Gene Expression: Mapping of the Essential c-Ets-1 Domain. Molecular and Cellular Biology, 1995, 15, 2849-2857.	2.3	117
67	Ras mediates Src but not epidermal growth factor-receptor tyrosine kinase signaling pathways in GH4 neuroendocrine cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8612-8616.	7.1	27
68	Helix-loop-helix proteins are present and differentially expressed in different cell lines from the anterior pituitary. Molecular and Cellular Endocrinology, 1993, 96, 167-176.	3.2	16
69	A Multifunctional Prokaryotic Protein Expression System: Overproduction, Affinity Purification, and Selective Detection. DNA and Cell Biology, 1993, 12, 441-453.	1.9	92
70	Insulin activation of rat prolactin promoter activity. Molecular and Cellular Endocrinology, 1991, 78, 55-60.	3.2	23
71	Structure-Function Analysis of the Rat Prolactin Promoter: Phasing Requirements of Proximal Cell-Specific Elements. Molecular Endocrinology, 1991, 5, 836-843.	3.7	32
72	Lipoprotein Lipase Gene Expression in Rat Adipocytes Is Regulated by Isoproterenol and Insulin through Different Mechanisms. Molecular Endocrinology, 1990, 4, 1416-1422.	3.7	108

#	Article	IF	CITATIONS
73	Activation of the Murine Thyrotropin β-Subunit Promoter by GH4Rat Pituitary Cell-Free Extracts. Molecular Endocrinology, 1990, 4, 1887-1896.	3.7	6
74	Identification ofCis-Acting Promoter Elements Important for Expression of the Mouse Glycoprotein Hormone α-Subunit Gene in Thyrotropes. Molecular Endocrinology, 1990, 4, 766-772.	3.7	26
75	Protein Factors in Thyrotropic Tumor Nuclear Extracts Bind to a Region of the Mouse Thyrotropin β-Subunit Promoter Essential for Expression in Thyrotropes. Molecular Endocrinology, 1990, 4, 1897-1904.	3.7	33
76	Identification of Thyrotroph-Specific Factors andCis-Acting Sequences of the Murine Thyrotropinl ² Subunit Gene. Molecular Endocrinology, 1989, 3, 1037-1045.	3.7	23
77	Cell-specific expression of transfected brain identifier repetitive DNAs. Nucleic Acids Research, 1988, 16, 3963-3976.	14.5	4
78	Differential Ability of Various Plasmid DNAs to Sequester Inhibitors of RNA Polymerase III Transcription. DNA and Cell Biology, 1987, 6, 231-237.	5.2	4
79	Selective transcription and DNase I protection of the rat prolactin gene by GH3 pituitary cell-free extracts Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5211-5215.	7.1	82
80	Stable accumulation of a rat truncated repeat transcript in Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3106-3110.	7.1	6
81	Transcription of two classes of rat growth hormone gene-associated repetitive DNA: differences in activity and effects of tandem repeat structure. Nucleic Acids Research, 1984, 12, 7153-7173.	14.5	25