
Tiffany M Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4689650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends in Neurosciences, 2011, 34, 572-580.	8.6	451
2	Melanopsin-Positive Intrinsically Photosensitive Retinal Ganglion Cells: From Form to Function. Journal of Neuroscience, 2011, 31, 16094-16101.	3.6	219
3	Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells. Journal of Neuroscience, 2009, 29, 476-482.	3.6	200
4	A Role for Melanopsin in Alpha Retinal Ganglion Cells and Contrast Detection. Neuron, 2014, 82, 781-788.	8.1	195
5	Intrinsic and Extrinsic Light Responses in Melanopsin-Expressing Ganglion Cells During Mouse Development. Journal of Neurophysiology, 2008, 100, 371-384.	1.8	160
6	Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. Journal of Comparative Neurology, 2011, 519, 1492-1504.	1.6	101
7	Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells. Neuron, 2019, 103, 642-657.e7.	8.1	93
8	Differential Cone Pathway Influence on Intrinsically Photosensitive Retinal Ganglion Cell Subtypes. Journal of Neuroscience, 2010, 30, 16262-16271.	3.6	90
9	Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron, 2018, 99, 754-767.e4.	8.1	88
10	Diverse types of ganglion cell photoreceptors in the mammalian retina. Progress in Retinal and Eye Research, 2012, 31, 287-302.	15.5	87
11	Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cellular and Molecular Life Sciences, 2021, 78, 889-907.	5.4	87
12	Differential Investment Behavior between Grandparents and Grandchildren: The Role of Paternity Uncertainty. Evolutionary Psychology, 2009, 7, 147470490900700.	0.9	74
13	Distinct ipRGC subpopulations mediate light's acute and circadian effects on body temperature and sleep. ELife, 2019, 8, .	6.0	71
14	Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience, 2010, 166, 397-407.	2.3	67
15	A noncanonical inhibitory circuit dampens behavioral sensitivity to light. Science, 2020, 368, 527-531.	12.6	62
16	Divergent projection patterns of M1 ipRGC subtypes. Journal of Comparative Neurology, 2018, 526, 2010-2018.	1.6	57
17	Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. European Journal of Neuroscience, 2011, 33, 856-867.	2.6	55
18	Atoh7-independent specification of retinal ganglion cell identity. Science Advances, 2021, 7, .	10.3	41

TIFFANY M SCHMIDT

#	Article	IF	CITATIONS
19	M1 Intrinsically Photosensitive Retinal Ganglion Cells Integrate Rod and Melanopsin Inputs to Signal in Low Light. Cell Reports, 2019, 29, 3349-3355.e2.	6.4	35
20	Overlapping morphological and functional properties between M4 and M5 intrinsically photosensitive retinal ganglion cells. Journal of Comparative Neurology, 2020, 528, 1028-1040.	1.6	33
21	Re-evaluating the Role of Intrinsically Photosensitive Retinal Ganglion Cells: New Roles in Image-Forming Functions. Integrative and Comparative Biology, 2016, 56, 834-841.	2.0	32
22	Light-dependent pathways for dopaminergic amacrine cell development and function. ELife, 2018, 7, .	6.0	32
23	Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina. Cell Reports, 2018, 23, 2416-2428.	6.4	29
24	Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models. Frontiers in Cellular Neuroscience, 2017, 11, 295.	3.7	26
25	Melanopsin Phototransduction Contributes to Light-Evoked Choroidal Expansion and Rod L-Type Calcium Channel Function In Vivo. , 2016, 57, 5314.		23
26	Melanopsin phototransduction: beyond canonical cascades. Journal of Experimental Biology, 2021, 224, .	1.7	21
27	An Isolated Retinal Preparation to Record Light Response from Genetically Labeled Retinal Ganglion Cells. Journal of Visualized Experiments, 2011, , .	0.3	20
28	Loss of Gq/11 Genes Does Not Abolish Melanopsin Phototransduction. PLoS ONE, 2014, 9, e98356.	2.5	20
29	Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Development, 2019, 14, 8.	2.4	17
30	Morphological Identification of Melanopsin-Expressing Retinal Ganglion Cell Subtypes in Mice. Methods in Molecular Biology, 2018, 1753, 275-287.	0.9	13
31	Single-cell RNA-Seq of Defined Subsets of Retinal Ganglion Cells. Journal of Visualized Experiments, 2017, , .	0.3	7
32	Novel insights into non-image forming visual processing in the retina. Cellscience, 2008, 5, 77-83.	0.3	5
33	Role of Melastatin-Related Transient Receptor Potential Channel TRPM1 in the Retina: Clues from Horses and Mice. Journal of Neuroscience, 2009, 29, 11720-11722.	3.6	4