Michael R Gau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4689174/publications.pdf

Version: 2024-02-01

567281 552781 61 866 15 26 citations h-index g-index papers 63 63 63 1097 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Iron(II) Mediated Deazotation of Benzyl Azide: Trapping and Subsequent Transformations of the Benzaldimine Fragment. Inorganic Chemistry, 2022, 61, 1079-1090.	4.0	4
2	Electronic structure studies reveal 4f/5d mixing and its effect on bonding characteristics in Ce-imido and -oxo complexes. Chemical Science, 2022, 13, 1759-1773.	7.4	12
3	Hemicubane topological analogs of the oxygen-evolving complex of photosystem II mediating water-assisted propylene carbonate oxidation. Chemical Communications, 2022, 58, 2532-2535.	4.1	2
4	Counteranions at Peripheral Sites Tune Guest Affinity for a Protonated Hemicryptophane. Journal of Organic Chemistry, 2022, 87, 5158-5165.	3.2	2
5	Discovery and mechanistic investigation of photoinduced sp3 C–H activation of hydrocarbons by the simple anion hexachlorotitanate. Chem Catalysis, 2022, 2, 853-866.	6.1	19
6	An Isolable Azide Adduct of Titanium(II) Follows Bifurcated Deazotation Pathways to an Imide. Journal of the American Chemical Society, 2022, 144, 527-537.	13.7	6
7	Macrocycle-Induced Modulation of Internuclear Interactions in Homobimetallic Complexes. Inorganic Chemistry, 2022, , .	4.0	3
8	Tantalum, easy as Pi: understanding differences in metal–imido bonding towards improving Ta/Nb separations. Chemical Science, 2022, 13, 6796-6805.	7.4	3
9	Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a Mixed-Valence Trivanadium Nitride Having a V ₃ N ₄ Double-Diamond Core. Journal of the American Chemical Society, 2022, 144, 10201-10219.	13.7	3
10	The underappreciated influence of ancillary halide on metal–ligand proton tautomerism. Chemical Science, 2022, 13, 7837-7845.	7.4	4
11	Copper-Catalyzed Addition of Alcohols to Carbodiimides: Oxygen as an Accelerant. Organic Process Research and Development, 2022, 26, 1803-1811.	2.7	5
12	Ditelluride, Terminal Tellurido, and Bis(tellurido) Motifs of Titanium. Journal of the American Chemical Society, 2022, 144, 13066-13070.	13.7	2
13	Multinuclear Clusters of Manganese and Lithium with Silsesquioxane-Derived Ligands: Synthesis and Ligand Rearrangement by Dioxygen- and Base-Mediated Si–O Bond Cleavage. Inorganic Chemistry, 2021, 60, 2866-2871.	4.0	12
14	Isolation and characterization of a covalent CeIV-Aryl complex with an anomalous 13C chemical shift. Nature Communications, 2021, 12, 1713.	12.8	20
15	Pyridyldiimine macrocyclic ligands: Influences of template ion, linker length and imine substitution on ligand synthesis, structure and redox properties. Polyhedron, 2021, 198, 115044.	2.2	7
16	Photocatalytic C–H activation and the subtle role of chlorine radical complexation in reactivity. Science, 2021, 372, 847-852.	12.6	144
17	Mono- and Dinuclear Binding Modes of the 2,5-Bis(α-pyridyl)pyrrolate Ligand in Platinum(II) Complexes. Organometallics, 2021, 40, 1806-1810.	2.3	1
18	Phosphorus and Arsenic Atom Transfer to Isocyanides to Form Ï€â€Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angewandte Chemie - International Edition, 2021, 60, 17595-17600.	13.8	11

#	Article	IF	CITATIONS
19	Phosphorus and Arsenic Atom Transfer to Isocyanides to Form Ï€â€Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angewandte Chemie, 2021, 133, 17736-17741.	2.0	6
20	Domino Michael/Mannich Annulation Reaction of N-Sulfinyl Lithiodienamines. Organic Letters, 2021, 23, 7014-7017.	4.6	2
21	Interdependent Metal–Metal Bonding and Ligand Redox-Activity in a Series of Dinuclear Macrocyclic Complexes of Iron, Cobalt, and Nickel. Inorganic Chemistry, 2020, 59, 4200-4214.	4.0	27
22	Unusual cyanide and methyl binding modes at a dicobalt macrocycle following acetonitrile C–C bond activation. Chemical Communications, 2020, 56, 9675-9678.	4.1	10
23	A Mononuclear and High-Spin Tetrahedral Ti ^{II} Complex. Inorganic Chemistry, 2020, 59, 17834-17850.	4.0	12
24	Understanding Molecular Factors That Determine Performance in the Rare Earth (TriNOx) Separations System. ACS Sustainable Chemistry and Engineering, 2020, 8, 14786-14794.	6.7	11
25	Effects of Tuning Intramolecular Proton Acidity on CO ₂ Reduction by Mn Bipyridyl Species. Organometallics, 2020, 39, 2425-2437.	2.3	12
26	Mimicking the Constrained Geometry of a Nitrogen-Fixation Intermediate. Journal of the American Chemical Society, 2020, 142, 8142-8146.	13.7	37
27	Synthesis and Reactivity of Ptll Methyl Complexes Supported by Pyrazolate Pincer Ligands. Organometallics, 2020, 39, 1230-1237.	2.3	4
28	Unusual Dinitrogen Binding and Electron Storage in Dinuclear Iron Complexes. Journal of the American Chemical Society, 2020, 142, 8147-8159.	13.7	24
29	Tailoring Hot Exciton Dynamics in 2D Hybrid Perovskites through Cation Modification. ACS Nano, 2020, 14, 3621-3629.	14.6	38
30	Reactivity of Ce(<scp>iv</scp>) imido compounds with heteroallenes. Chemical Communications, 2020, 56, 4781-4784.	4.1	11
31	Distance Dependence of Electronic Coupling in Rigid, Cofacially Compressed, π-Stacked Organic Mixed-Valence Systems. Journal of Physical Chemistry B, 2020, 124, 1033-1048.	2.6	9
32	High-throughput screening for discovery of benchtop separations systems for selected rare earth elements. Communications Chemistry, 2020, 3, .	4.5	26
33	Reversible Chelation and Î- ⁵ -Pyrrolyl Coordination in a [Cp*Ir] ²⁺ Fragment. Organometallics, 2020, 39, 1145-1148.	2.3	1
34	Tebbe-like and Phosphonioalkylidene and -alkylidyne Complexes of Scandium. Journal of the American Chemical Society, 2020, 142, 10143-10152.	13.7	18
35	Nâ^'H Bond Formation at a Diiron Bridging Nitride. Angewandte Chemie - International Edition, 2020, 59, 15215-15219.	13.8	20
36	Nâ^'H Bond Formation at a Diiron Bridging Nitride. Angewandte Chemie, 2020, 132, 15327-15331.	2.0	4

#	Article	IF	Citations
37	2,2′-Oxybis[1,3-bis(4-methoxyphenyl)-2,3-dihydro-1 <i>H</i> -benzo[<i>d</i>][1,3,2]diazaborole]. IUCrData, 2020, 5, .	0.3	0
38	10-Phenyl-10 <i>H</i> -phenoxazine-4,6-diol tetrahydrofuran monosolvate. IUCrData, 2020, 5, .	0.3	0
39	A Transannular Rearrangement Reaction of a Pyrroloindoline Diketopiperazine. Organic Letters, 2019, 21, 6619-6623.	4.6	5
40	Access to Highly Functionalized Cyclopentenones via Diastereoselective Pauson–Khand Reaction of Siloxy-Tethered 1,7-Enynes. Organic Letters, 2019, 21, 8646-8651.	4.6	17
41	Tuning Metal–Metal Interactions through Reversible Ligand Folding in a Series of Dinuclear Iron Complexes. Inorganic Chemistry, 2019, 58, 12234-12244.	4.0	21
42	Experimental and Theoretical Investigation of the Ion Conduction Mechanism of Tris(adiponitrile)perchloratosodium, a Self-Binding, Melt-Castable Crystalline Sodium Electrolyte. Chemistry of Materials, 2019, 31, 8850-8863.	6.7	9
43	Conversion of methane to ethylene using an Ir complex and phosphorus ylide as a methylene transfer reagent. Chemical Communications, 2019, 55, 1927-1930.	4.1	6
44	Multiple Bonding in Lanthanides and Actinides: Direct Comparison of Covalency in Thorium(IV)- and Cerium(IV)-Imido Complexes. Journal of the American Chemical Society, 2019, 141, 9185-9190.	13.7	64
45	An investigation of the binding of $(i>S)$ -monothioBINOLate to rare earth metal cations. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 624-629.	1.6	4
46	Longer Cations Increase Energetic Disorder in Excitonic 2D Hybrid Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1198-1205.	4.6	75
47	Coordination Chemistry of a Strongly-Donating Hydroxylamine with Early Actinides: An Investigation of Redox Properties and Electronic Structure. Inorganic Chemistry, 2018, 57, 4387-4394.	4.0	21
48	Crystal structure and ionic conductivity of the soft solid crystal: isoquinoline3•(LiCl)2. Ionics, 2018, 24, 343-349.	2.4	5
49	Rational Design of a Catalyst for the Selective Monoborylation of Methane. ACS Catalysis, 2018, 8, 10021-10031.	11.2	29
50	Silyl Transfer Pathway to a Ce(IV) Imido Complex. Organometallics, 2018, 37, 4332-4335.	2.3	13
51	Crystal structures of sodium-, lithium-, and ammonium 4,5-dihydroxybenzene-1,3-disulfonate (tiron) hydrates. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 918-925.	0.5	0
52	Synthesis and Structure of 2,5-Bis [<i>N</i> -(2,6-mesityl)iminomethyl]pyrrolylcobalt(II): Evidence for One-Electron-Oxidized, Redox Noninnocent Ligand Behavior. Inorganic Chemistry, 2017, 56, 3377-3385.	4.0	12
53	Sulfone–Metal Exchange and Alkylation of Sulfonylnitriles. Angewandte Chemie - International Edition, 2017, 56, 7257-7260.	13.8	10
54	Synthesis of Two Lead Complexes of Propellant Stabilizer Compounds: In Pursuit of Novel Propellant Additives. ChemistrySelect, 2017, 2, 11673-11676.	1.5	3

#	Article	IF	CITATIONS
55	Sulfone–Metal Exchange and Alkylation of Sulfonylnitriles. Angewandte Chemie, 2017, 129, 7363-7366. Structure of salts of lithium chloride and lithium hexafluorophosphate as solvates with pyridine and	2.0	2
56	vinylpyridine and structural comparisons: (C ₅ H ₅ N)LiPF ₆ , [<i>p</i> -(CH ₂ =CH)C ₅ H ₄ N]LiPF ₆ , [(C ₅ H ₅ N)LiCl] _{<i>n</i>>(i>} , and [<i>p</i> -(CH ₂ EH)C ₅ Li(14-Cl) ₂ Li(24-Cl) _{Li(24-Cl)_{Li(2}}}	0.5 /i>-(CH <s< td=""><td>2 ub>2</td></s<>	2 ub>2
57	Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 264-269. Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators. Journal of Materials Chemistry A, 2016, 4, 14380-14391.	10.3	15
58	A Protocol for Safe Lithiation Reactions Using Organolithium Reagents. Journal of Visualized Experiments, $2016, , .$	0.3	3
59	Palladium and Platinum Acyl Complexes and Their Lewis Acid Adducts. Experimental and Computational Study of Thermodynamics and Bonding. Organometallics, 2015, 34, 4069-4075.	2.3	6
60	The polyoctahedral silsesquioxane (POSS) 1,3,5,7,9,11,13,15-octaphenylpentacyclo[9.5.1.1 ^{3,9} .1 ^{5,15} .1 ^{7,13}]octasilo (octaphenyl-POSS). Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 971-974.	X 0 1152	8
61	Preparation of a "twisted basket―Mn4N8 cluster: a two-hydrogen-atom reduced analogue of the Mn4N8 pinned butterfly. Chemical Communications, 2014, 50, 7780.	4.1	3