Taku Hibino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688736/publications.pdf

Version: 2024-02-01

24 2,905 15 23
papers citations h-index g-index

25 25 25 2786
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Identification of an antibacterial polypeptide in mouse seminal vesicle secretions. Journal of Reproductive Immunology, 2021, 148, 103436.	1.9	1
2	Deletion of a Seminal Gene Cluster Reinforces a Crucial Role of SVS2 in Male Fertility. International Journal of Molecular Sciences, 2019, 20, 4557.	4.1	10
3	Cidaroids, clypeasteroids, and spatangoids: Procurement, culture, and basic methods. Methods in Cell Biology, 2019, 150, 81-103.	1.1	2
4	Development of the coelomic cavities in larvae of the living isocrinid sea lily <i>Metacrinus rotundus</i> . Acta Zoologica, 2019, 100, 414-430.	0.8	4
5	Echinodermata: The Complex Immune System in Echinoderms. , 2018, , 409-501.		62
6	Correction to: Echinodermata: The Complex Immune System in Echinoderms. , 2018, , E1-E1.		3
7	IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. ELife, 2017, 6, .	6.0	57
8	Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunology and Cell Biology, 2016, 94, 861-874.	2.3	78
9	Early stalked stages in ontogeny of the living isocrinid sea lily <i><scp>M</scp>etacrinus rotundus</i> . Acta Zoologica, 2016, 97, 102-116.	0.8	16
10	Development of ciliary bands in larvae of the living isocrinid sea lily <i><scp>M</scp>etacrinus rotundus</i> . Acta Zoologica, 2015, 96, 36-43.	0.8	22
11	Seminal vesicle protein SVS2 is required for sperm survival in the uterus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4145-4150.	7.1	100
12	Sp185/333: A novel family of genes and proteins involved in the purple sea urchin immune response. Developmental and Comparative Immunology, 2010, 34, 235-245.	2.3	57
13	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
14	RTK and TGF- \hat{l}^2 signaling pathways genes in the sea urchin genome. Developmental Biology, 2006, 300, 132-152.	2.0	140
15	The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 2006, 300, 349-365.	2.0	513
16	Phylogenetic correspondence of the body axes in bilaterians is revealed by the right-sided expression of Pitx genes in echinoderm larvae. Development Growth and Differentiation, 2006, 48, 587-595.	1.5	22
17	Ion flow regulates left–right asymmetry in sea urchin development. Development Genes and Evolution, 2006, 216, 265-76.	0.9	63
18	Genomic Insights into the Immune System of the Sea Urchin. Science, 2006, 314, 952-956.	12.6	384

#	Article	IF	CITATIONS
19	Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular) Tj ETQq1 1 0.78-546-558.	4314 rgBT 0.9	Overlock 13
20	Regrowth of the stalk of the Sea lily, Metacrinus rotundus (Echinodermata: Crinoidea). The Journal of Experimental Zoology, 2004, 301A, 464-471.	1.4	14
21	Larval stages of a living sea lily (stalked crinoid echinoderm). Nature, 2003, 421, 158-160.	27.8	110
22	The Behavior and the Morphology of Sea Lilies with Shortened Stalks: Implications on the Evolution of Feather Stars. Zoological Science, 2002, 19, 961-964.	0.7	5
23	The Centrosome-Attracting Body, Microtubule System, and Posterior Egg Cytoplasm Are Involved in Positioning of Cleavage Planes in the Ascidian Embryo. Developmental Biology, 1999, 209, 72-85.	2.0	98
24	Centrosome-attracting body: A novel structure closely related to unequal cleavages in the ascidian embryo. Development Growth and Differentiation, 1998, 40, 85-95.	1.5	96