Guanying Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688428/publications.pdf

Version: 2024-02-01

139 papers	14,942 citations	56 h-index	17592 121 g-index
140 all docs	140 docs citations	140 times ranked	13437 citing authors

#	Article	IF	CITATIONS
1	Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chemical Reviews, 2014, 114, 5161-5214.	47.7	2,163
2	Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chemical Reviews, 2016, 116, 2826-2885.	47.7	1,201
3	(î±-NaYbF ₄ :Tm ³⁺)/CaF ₂ Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano, 2012, 6, 8280-8287.	14.6	647
4	Ultrasmall Monodisperse NaYF ₄ :Yb ³⁺ /Tm ³⁺ Nanocrystals with Enhanced Near-Infrared Upconversion Photoluminescence. ACS Nano, 2010, 4, 3163-3168.	14.6	586
5	Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chemical Society Reviews, 2015, 44, 1680-1713.	38.1	483
6	Core/Shell NaGdF ₄ :Nd ³⁺ /NaGdF ₄ Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications. ACS Nano, 2012, 6, 2969-2977.	14.6	403
7	Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF ₄ :Er ³⁺ Nanocrystals under Excitation at 1490 nm. ACS Nano, 2011, 5, 4981-4986.	14.6	348
8	Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal. Nano Letters, 2015, 15, 7400-7407.	9.1	341
9	Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Triâ€doped Upconversion Colloidal Nanoparticles at 800 nm. Advanced Optical Materials, 2013, 1, 644-650.	7.3	321
10	Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window. Journal of the American Chemical Society, 2016, 138, 16192-16195.	13.7	314
11	Upconversion Emission Enhancement in Yb ³⁺ /Er ³⁺ -Codoped Y ₂ O ₃ Nanocrystals by Tridoping with Li ⁺ Ions. Journal of Physical Chemistry C, 2008, 112, 12030-12036.	3.1	306
12	Dye-sensitized lanthanide-doped upconversion nanoparticles. Chemical Society Reviews, 2017, 46, 4150-4167.	38.1	281
13	Nanochemistry and nanomaterials for photovoltaics. Chemical Society Reviews, 2013, 42, 8304.	38.1	269
14	Synthesis and Optimization of MoS ₂ @Fe ₃ O ₄ â€ICG/Pt(IV) Nanoflowers for MR/IR/PA Bioimaging and Combined PTT/PDT/Chemotherapy Triggered by 808 nm Laser. Advanced Science, 2017, 4, 1600540.	11.2	248
15	Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles. Accounts of Chemical Research, 2013, 46, 1474-1486.	15.6	225
16	Synthesis of Monodisperse Au, Ag, and Au–Ag Alloy Nanoparticles with Tunable Size and Surface Plasmon Resonance Frequency. Chemistry of Materials, 2011, 23, 4098-4101.	6.7	207
17	All-in-One Theranostic Nanomedicine with Ultrabright Second Near-Infrared Emission for Tumor-Modulated Bioimaging and Chemodynamic/Photodynamic Therapy. ACS Nano, 2020, 14, 9613-9625.	14.6	203
18	Hexamodal Imaging with Porphyrinâ€Phospholipidâ€Coated Upconversion Nanoparticles. Advanced Materials, 2015, 27, 1785-1790.	21.0	189

#	Article	IF	Citations
19	Upconversion emission tuning from green to red in Yb ³⁺ /Ho ³⁺ -codoped NaYF ₄ nanocrystals by tridoping with Ce ³⁺ ions. Nanotechnology, 2009, 20, 385704.	2.6	188
20	Upconversion: Tunable Near Infrared to Ultraviolet Upconversion Luminescence Enhancement in (αâ€NaYF ₄ :Yb,Tm)/CaF ₂ Core/Shell Nanoparticles for In situ Realâ€time Recorded Biocompatible Photoactivation (Small 19/2013). Small, 2013, 9, 3212-3212.	10.0	182
21	Upconversion Nanoparticles: A Versatile Solution to Multiscale Biological Imaging. Bioconjugate Chemistry, 2015, 26, 166-175.	3.6	178
22	Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals. Applied Physics Letters, 2007, 91, .	3.3	175
23	Monodisperse NaYbF4 : Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale, 2011, 3, 2003.	5.6	170
24	Upconversion mechanism for two-color emission in rare-earth-ion-dopedZrO2nanocrystals. Physical Review B, 2007, 75, .	3.2	169
25	Sensing Using Rare-Earth-Doped Upconversion Nanoparticles. Theranostics, 2013, 3, 331-345.	10.0	165
26	Alleviating Luminescence Concentration Quenching in Upconversion Nanoparticles through Organic Dye Sensitization. Journal of the American Chemical Society, 2016, 138, 15130-15133.	13.7	149
27	Two-color upconversion in rare-earth-ion-doped ZrO2 nanocrystals. Applied Physics Letters, 2006, 89, 163105.	3.3	143
28	Enhancing Solar Cell Efficiency Using Photon Upconversion Materials. Nanomaterials, 2015, 5, 1782-1809.	4.1	142
29	Lifetime-Encoded Infrared-Emitting Nanoparticles for <i>in Vivo</i> Multiplexed Imaging. ACS Nano, 2018, 12, 4362-4368.	14.6	138
30	Temporal Multiplexed in Vivo Upconversion Imaging. Journal of the American Chemical Society, 2020, 142, 2023-2030.	13.7	138
31	Enhancement of the upconversion radiation in Y2O3:Er3+ nanocrystals by codoping with Li+ ions. Applied Physics Letters, 2008, 92, .	3.3	134
32	Size-Tunable and Monodisperse Tm ³⁺ /Gd ³⁺ -Doped Hexagonal NaYbF ₄ Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13884-13893.	8.0	128
33	Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. Journal of Materials Chemistry, 2012, 22, 20190.	6.7	126
34	Lanthanideâ€Doped Nearâ€Infrared Nanoparticles for Biophotonics. Advanced Materials, 2021, 33, e2000678.	21.0	113
35	Recent Progress in Upconversion Photodynamic Therapy. Nanomaterials, 2018, 8, 344.	4.1	106
36	Efficient Broadband Upconversion of Nearâ€Infrared Light in Dyeâ€Sensitized Core/Shell Nanocrystals. Advanced Optical Materials, 2016, 4, 1760-1766.	7.3	104

#	Article	IF	Citations
37	Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. Journal of Materials Chemistry, 2012, 22, 16709.	6.7	101
38	Enhancing dye-sensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale, 2017, 9, 6711-6715.	5.6	99
39	Ethylenediaminetetraacetic acid (EDTA)-controlled synthesis of multicolor lanthanide doped BaYF5 upconversion nanocrystals. Journal of Materials Chemistry, 2011, 21, 17202.	6.7	93
40	Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated <i>in vivo</i> optical imaging in the second biological window. Nanoscale, 2018, 10, 17771-17780.	5.6	87
41	Accurate In Vivo Nanothermometry through NIRâ€II Lanthanide Luminescence Lifetime. Small, 2020, 16, e2004118.	10.0	84
42	Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media. Applied Physics Letters, 2008, 93, .	3.3	82
43	Efficient Erbiumâ€Sensitized Core/Shell Nanocrystals for Short Wave Infrared Bioimaging. Advanced Optical Materials, 2018, 6, 1800690.	7.3	80
44	Simultaneous Multiple Wavelength Upconversion in a Coreâ€"Shell Nanoparticle for Enhanced Near Infrared Light Harvesting in a Dye-Sensitized Solar Cell. ACS Applied Materials & Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2014, 6, 18018-18025.	8.0	77
45	Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration. Nanomaterials, 2014, 4, 55-68.	4.1	76
46	Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coordination Chemistry Reviews, 2021, 436, 213821.	18.8	76
47	Temporal Multilevel Luminescence Anticounterfeiting through Scattering Media. ACS Nano, 2020, 14, 6532-6538.	14.6	74
48	Tunable Near Infrared to Ultraviolet Upconversion Luminescence Enhancement in (αâ€NaYF ₄ :Yb,Tm)/CaF ₂ Core/Shell Nanoparticles for In situ Realâ€time Recorded Biocompatible Photoactivation. Small, 2013, 9, 3213-3217.	10.0	69
49	Facile Synthesis and Potential Bioimaging Applications of Hybrid Upconverting and Plasmonic NaGdF ₄ : Yb ³⁺ , Er ³⁺ /Silica/Gold Nanoparticles. Theranostics, 2013, 3, 275-281.	10.0	67
50	Dye Sensitization and Local Surface Plasmon Resonance-Enhanced Upconversion Luminescence for Efficient Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24737-24746.	8.0	65
51	Tuning the size and shape of colloidal cerium oxide nanocrystals through lanthanide doping. Chemical Communications, 2011, 47, 9648.	4.1	63
52	Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging together with photothermal therapy. Scientific Reports, 2017, 7, 15753.	3.3	63
53	Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y_2O_3 induced by infrared diode laser excitation. Optics Letters, 2007, 32, 87.	3.3	62
54	Enhancement of upconversion luminescence of Y2O3:Er3+ nanocrystals by codoping Li+–Zn2+. Journal of Alloys and Compounds, 2011, 509, 409-413.	5 . 5	62

#	Article	IF	CITATIONS
55	Recent advances of lanthanide-doped upconversion nanoparticles for biological applications. Nanotechnology, 2020, 31, 072001.	2.6	61
56	New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coordination Chemistry Reviews, 2021, 440, 213971.	18.8	60
57	Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals. Optics Communications, 2009, 282, 3028-3031.	2.1	57
58	Tuning upconversion through a sensitizer/activator-isolated NaYF ₄ core/shell structure. Nanoscale, 2015, 7, 3976-3984.	5.6	57
59	Point of care upconversion nanoparticles-based lateral flow assay quantifying myoglobin in clinical human blood samples. Sensors and Actuators B: Chemical, 2019, 282, 309-316.	7.8	55
60	Mechanism for the Extremely Efficient Sensitization of Yb ³⁺ Luminescence in CsPbCl ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 487-492.	4.6	55
61	A red thermally activated delayed fluorescence emitter employing dipyridophenazine with a gradient multi-inductive effect to improve radiation efficiency. Journal of Materials Chemistry C, 2019, 7, 7525-7530.	5.5	54
62	Multimode Imaging-Guided Photothermal/Chemodynamic Synergistic Therapy Nanoagent with a Tumor Microenvironment Responded Effect. ACS Applied Materials & Interfaces, 2020, 12, 52479-52491.	8.0	54
63	Four-photon upconversion induced by infrared diode laser excitation in rare-earth-ion-doped Y2O3 nanocrystals. Chemical Physics Letters, 2007, 448, 127-131.	2.6	53
64	Clearable Shortwave-Infrared-Emitting NaErF ₄ Nanoparticles for Noninvasive Dynamic Vascular Imaging. Chemistry of Materials, 2020, 32, 3365-3375.	6.7	53
65	Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coordination Chemistry Reviews, 2022, 457, 214423.	18.8	53
66	Intense ultraviolet upconversion emission from water-dispersed colloidal YF ₃ :Yb ³⁺ /Tm ³⁺ rhombic nanodisks. Nanoscale, 2014, 6, 753-757.	5.6	52
67	Subcellular Optogenetics Enacted by Targeted Nanotransformers of Near-Infrared Light. ACS Photonics, 2017, 4, 806-814.	6.6	52
68	Near vacuum ultraviolet luminescence of Gd^3+ and Er^3+ ions generated by super saturation upconversion processes. Optics Express, 2009, 17, 16366.	3.4	51
69	Enhanced upconversion emission in colloidal (NaYF_4:Er^3+)/NaYF_4  core/shell nanoparticles excited at 1523Ânm. Optics Letters, 2014, 39, 1386.	3.3	51
70	Nd ³⁺ -Sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure. Nanoscale, 2017, 9, 10633-10638.	5.6	51
71	NIRâ€II/III Luminescence Ratiometric Nanothermometry with Phononâ€Tuned Sensitivity. Advanced Optical Materials, 2020, 8, 1901173.	7.3	51
72	Lanthanideâ€Doped Fluoride Core/Multishell Nanoparticles for Broadband Upconversion of Infrared Light. Advanced Optical Materials, 2015, 3, 575-582.	7.3	50

#	Article	IF	Citations
73	Prussian blue-coated lanthanide-doped core/shell/shell nanocrystals for NIR-II image-guided photothermal therapy. Nanoscale, 2019, 11, 22079-22088.	5.6	50
74	Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton Transactions, 2018, 47, 8526-8537.	3.3	48
75	Pdâ€Porphyrinâ€Crossâ€Linked Implantable Hydrogels with Oxygenâ€Responsive Phosphorescence. Advanced Healthcare Materials, 2014, 3, 891-896.	7.6	46
76	Sub-6 nm monodisperse hexagonal core/shell NaGdF ₄ nanocrystals with enhanced upconversion photoluminescence. Nanoscale, 2017, 9, 91-98.	5.6	45
77	Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging. Nanoscale, 2015, 7, 10775-10780.	5.6	43
78	Synthesis of Upconversion \hat{l}^2 -NaYF4:Nd3+/Yb3+/Er3+ Particles with Enhanced Luminescent Intensity through Control of Morphology and Phase. Nanomaterials, 2015, 5, 218-232.	4.1	43
79	Microlens array enhanced upconversion luminescence at low excitation irradiance. Nanoscale, 2019, 11, 14070-14078.	5.6	41
80	Primary Luminescent Nanothermometers for Temperature Measurements Reliability Assessment. Advanced Photonics Research, 2021, 2, 2000169.	3.6	41
81	Background-Free Chromatographic Detection of Sepsis Biomarker in Clinical Human Serum through Near-Infrared to Near-Infrared Upconversion Immunolabeling. ACS Nano, 2020, 14, 16864-16874.	14.6	39
82	Tuning the size and upconversion emission of NaYF ₄ :Yb ³⁺ /Pr ³⁺ nanoparticles through Yb ³⁺ doping. RSC Advances, 2014, 4, 56302-56306.	3.6	38
83	Surfactant-stripped naphthalocyanines for multimodal tumor theranostics with upconversion guidance cream. Nanoscale, 2017, 9, 3391-3398.	5.6	38
84	Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions. Journal of Luminescence, 2009, 129, 197-202.	3.1	37
85	Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. Scientific Reports, 2017, 7, 13562.	3.3	37
86	Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm. Journal of Applied Physics, 2009, 105, .	2.5	36
87	Influence of Yb3+ concentration on upconversion luminescence of Ho3+. Optics Communications, 2011, 284, 1053-1056.	2.1	33
88	Controlled Synthesis of Monodisperse Hexagonal NaYF4:Yb/Er Nanocrystals with Ultrasmall Size and Enhanced Upconversion Luminescence. Molecules, 2017, 22, 2113.	3.8	33
89	Enhanced multiphoton ultraviolet and blue upconversion emissions in Y 2O3: Er3+ nanocrystals by codoping with Li+ ions. Solid State Communications, 2008, 148, 96-100.	1.9	31
90	Synthesis of monoclinic Na3ScF6:1mol% Er3+/2mol% Yb3+ microcrystals by a facile hydrothermal approach. Journal of Alloys and Compounds, 2012, 522, 74-77.	5.5	26

#	Article	IF	CITATIONS
91	A core–multiple shell nanostructure enabling concurrent upconversion and quantum cutting for photon management. Nanoscale, 2017, 9, 1934-1941.	5.6	26
92	Autofluorescence-free in vivo multicolor imaging using upconversion fluoride nanocrystals. Lasers in Medical Science, 2010, 25, 479-484.	2.1	24
93	Macrocyclic Polyoxometalates: Selective Polyanion Binding and Ultrahigh Proton Conduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
94	Nonlinear Photoacoustic Imaging by <i>in Situ</i> Multiphoton Upconversion and Energy Transfer. ACS Photonics, 2017, 4, 2699-2705.	6.6	22
95	Metal–Organic Cages with {SiW ₉ Ni ₄ } Polyoxotungstate Nodes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
96	Theranostic Upconversion Nanoparticles (I). Theranostics, 2013, 3, 289-291.	10.0	21
97	Glassy Amorphous Metal Injection Molded Induced Morphological Defects. American Journal of Applied Sciences, 2016, 13, 1476-1482.	0.2	21
98	Highly Controllable Synthesis and DFT Calculations of Double/Triple-Halide CsPbX3 (X = Cl, Br, I) Perovskite Quantum Dots: Application to Light-Emitting Diodes. Nanomaterials, 2019, 9, 172.	4.1	21
99	How to not build a cage: endohedral functionalization of polyoxometalate-based metal–organic polyhedra. Chemical Science, 2021, 12, 7361-7368.	7.4	21
100	Ultraefficient Singlet Oxygen Generation from Manganese-Doped Cesium Lead Chloride Perovskite Quantum Dots. ACS Nano, 2020, 14, 12596-12604.	14.6	20
101	Gene Silencing of Human Neuronal Cells for Drug Addiction Therapy using Anisotropic Nanocrystals. Theranostics, 2012, 2, 695-704.	10.0	18
102	Processability of Bulk Metallic Glasses. American Journal of Applied Sciences, 2017, 14, 294-301.	0.2	18
103	Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals. Nanomaterials, 2017, 7, 34.	4.1	17
104	Noninvasive Temperature Measurement in Dental Materials Using Nd ³⁺ , Yb ³⁺ Doped Nanoparticles Emitting in the Near Infrared Region. Particle and Particle Systems Characterization, 2020, 37, 1900445.	2.3	17
105	Controlled growth along circumferential edge and upconverting luminescence of \hat{l}^2 -NaYF4: 20%Yb3+, 1%Er3+ microcrystals. Materials Chemistry and Physics, 2012, 137, 97-102.	4.0	13
106	Controlling lanthanide-doped upconversion nanoparticles for brighter luminescence. Journal Physics D: Applied Physics, 2020, 53, 043001.	2.8	13
107	Effect of light scattering on upconversion photoluminescence quantum yield in microscale-to-nanoscale materials. Optics Express, 2020, 28, 22803.	3.4	13
108	Real-Time Imaging of Short-Wave Infrared Luminescence Lifetimes for Anti-counterfeiting Applications. Frontiers in Chemistry, 2021, 9, 659553.	3.6	12

#	Article	IF	Citations
109	A Class of Biocompatible Dye–Protein Complex Optical Nanoprobes. ACS Nano, 2022, 16, 328-339.	14.6	12
110	High-Sensitivity Sensing of Divalent Copper Ions at the Single Upconversion Nanoparticle Level. Analytical Chemistry, 2021, 93, 11686-11691.	6.5	11
111	Generation of 15 î½m emission through an upconversion-mediated looping mechanism in Er^3+/Sc^3+-codoped LiNbO_3 single crystal. Optics Letters, 2012, 37, 1268.	3.3	10
112	Nanostructured Solar Cells. Nanomaterials, 2016, 6, 145.	4.1	10
113	Enhancing near infrared persistent luminescence from Cr^3+-activated zinc gallogermanate powders through Ca^2+ doping. Optical Materials Express, 2017, 7, 2783.	3.0	10
114	Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies. Nanoscale, 2020, 12, 10592-10599.	5.6	10
115	Lanthanide doped nanoheaters with reliable and absolute temperature feedback. Physica B: Condensed Matter, 2022, 631, 413652.	2.7	10
116	In Situ Ultraviolet Polymerization Using Upconversion Nanoparticles: Nanocomposite Structures Patterned by Near Infrared Light. Nanomaterials, 2020, 10, 2054.	4.1	9
117	Excretable, ultrasmall hexagonal NaGdF4:Yb50% nanoparticles for bimodal imaging and radiosensitization. Cancer Nanotechnology, 2021, 12, 4.	3.7	9
118	Detecting Ferric Iron by Microalgal Residue-Derived Fluorescent Nanosensor with an Advanced Kinetic Model. IScience, 2020, 23, 101174.	4.1	8
119	Theranostic Upconversion Nanoparticles (II). Theranostics, 2013, 3, 354-355.	10.0	7
120	pH Mediated Control Synthesis of Lanthanide-Doped YPO4 Upconversion Nano/Microcrystals. American Journal of Engineering and Applied Sciences, 2015, 8, 310-317.	0.6	6
121	Core-shell nanoparticles for cancer imaging and therapy. , 2018, , 143-175.		6
122	<scp>TiO₂</scp> â€eoated fluoride nanoparticles for dental multimodal optical imaging. Journal of Biophotonics, 2018, 11, e201700029.	2.3	5
123	A hybrid molecular sensitizer for triplet fusion upconversion. Chemical Engineering Journal, 2021, 426, 131282.	12.7	5
124	Timing matters: pre-assembly <i>versus</i> post-assembly functionalization of a polyoxovanadate–organic cuboid. Chemical Science, 2022, 13, 5718-5725.	7.4	5
125	A Strategy for Prompt Phase Transfer of Upconverting Nanoparticles Through Surface Oleate-Mediated Supramolecular Assembly of Amino-I ² -Cyclodextrin. Frontiers in Chemistry, 2019, 7, 161.	3.6	4
126	Rare Earth-Doped Nanoparticles for Advanced In Vivo Near Infrared Imaging. , 2020, , 63-81.		4

#	Article	IF	CITATIONS
127	Metal–Organic Cages with {SiW ₉ Ni ₄ } Polyoxotungstate Nodes. Angewandte Chemie, 0, , .	2.0	4
128	Selected Papers from the 1st International Online Conference on Nanomaterials. Nanomaterials, 2019, 9, 1021.	4.1	3
129	Defect Structure and Upconversion Luminescence Properties of LiNbO3 Highly Doped Congruent In:Yb:Ho:LiNbO3 Crystals. Crystals, 2022, 12, 710.	2.2	3
130	ULTRAVIOLET AND BLUE UPCONVERSION EMISSIONS OF NaYF₄:La³⁺(Er³⁺, Tb³⁺) NANOCRYSTALS UNDER 532 NM LASER EXCITATION. Journal of Nonlinear Optical Physics and Materials, 2009, 18, 605-610.	1.8	2
131	A General Strategy to Enhance Upconversion luminescence in Rare-Earth-Ion-Doped Oxide Nanocrystals. American Journal of Engineering and Applied Sciences, 2016, 9, 79-83.	0.6	2
132	Upconversion-Enhanced Dye-Sensitized Solar Cells. , 2019, , 325-340.		2
133	Macrocyclic Polyoxometalates: Selective Polyanion Binding and Ultrahigh Proton Conduction. Angewandte Chemie, 0, , .	2.0	2
134	Nanoparticles for In Vivo Lifetime Multiplexed Imaging. Methods in Molecular Biology, 2021, 2350, 239-251.	0.9	1
135	Selected Papers from the Second International Online Conference on Nanomaterials. Nanomaterials, 2022, 12, 302.	4.1	1
136	High contrast in vivo bioimaging using multiphoton upconversion in novel rare-earth-doped fluoride upconversion nanoparticles. , $2013, \ldots$		0
137	Hydrogels: Pd-Porphyrin-Cross-Linked Implantable Hydrogels with Oxygen-Responsive Phosphorescence (Adv. Healthcare Mater. 6/2014). Advanced Healthcare Materials, 2014, 3, 890-890.	7.6	0
138	Development and characterization of a hexamodal imaging nanoparticle. , 2015, , .		0
139	7 Upconversion Enhancement Using Epitaxial Core–Shell Nanostructures. Nanomaterials and Their Applications, 2016, , 163-193.	0.0	0