
Mirja Hommel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4688247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimising the IgGâ€degrading enzyme treatment regimen for enhanced adenoâ€associated virus transduction in the presence of neutralising antibodies. Clinical and Translational Immunology, 2022, 11, e1375.	3.8	15
2	AdrA as a Potential Immunomodulatory Candidate for STING-Mediated Antiviral Therapy That Required Both Type I IFN and TNF-1± Production. Journal of Immunology, 2021, 206, 376-385.	0.8	5
3	Chemical modification of the adeno-associated virus capsid to improve gene delivery. Chemical Science, 2020, 11, 1122-1131.	7.4	40
4	TNF-alpha inhibition ameliorates HDV-induced liver damage in a mouse model of acute severe infection. JHEP Reports, 2020, 2, 100098.	4.9	15
5	Genetic-Based Approaches to Inherited Metabolic Liver Diseases. Human Gene Therapy, 2019, 30, 1190-1203.	2.7	25
6	Evaluating antibody functional activity and strain-specificity of vaccine candidates for malaria in pregnancy using in vitro phagocytosis assays. Parasites and Vectors, 2018, 11, 69.	2.5	16
7	A new HDV mouse model identifies mitochondrial antiviral signaling protein (MAVS) as a key player in IFN-β induction. Journal of Hepatology, 2017, 67, 669-679.	3.7	47
8	Improvement of Adeno-Associated Virus-Mediated Liver Transduction Efficacy by Regional Administration in <i>Macaca fascicularis</i> . Human Gene Therapy Clinical Development, 2017, 28, 68-73.	3.1	7
9	A new HDV mouse model showing important features of human infection and identifying MAVS as a key player in IFN-β induction. Journal of Hepatology, 2017, 66, S483.	3.7	0
10	Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Frontiers in Neuroanatomy, 2017, 11, 2.	1.7	36
11	Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice. Journal of Virology, 2016, 90, 8563-8574.	3.4	22
12	New Insights into Acquisition, Boosting, and Longevity of Immunity to Malaria in Pregnant Women. Journal of Infectious Diseases, 2012, 206, 1612-1621.	4.0	85
13	Differentiation of Inflammatory Dendritic Cells Is Mediated by NF-κB1–Dependent GM-CSF Production in CD4 T Cells. Journal of Immunology, 2011, 186, 5468-5477.	0.8	72
14	Antibodies to a Full-Length VAR2CSA Immunogen Are Broadly Strain-Transcendent but Do Not Cross-Inhibit Different Placental-Type Parasite Isolates. PLoS ONE, 2011, 6, e16622.	2.5	40
15	Immunization with VAR2CSA-DBL5 Recombinant Protein Elicits Broadly Cross-Reactive Antibodies to Placental <i>Plasmodium falciparum</i> -Infected Erythrocytes. Infection and Immunity, 2010, 78, 2248-2256.	2.2	34
16	Evaluation of the Antigenic Diversity of Placenta-Binding <i>Plasmodium falciparum</i> Variants and the Antibody Repertoire among Pregnant Women. Infection and Immunity, 2010, 78, 1963-1978.	2.2	51
17	Sir2 Paralogues Cooperate to Regulate Virulence Genes and Antigenic Variation in Plasmodium falciparum. PLoS Biology, 2009, 7, e1000084.	5.6	211
18	Analysis of structure and function of the giant protein Pf332 in <i>Plasmodium falciparum</i> . Molecular Microbiology, 2009, 71, 48-65.	2.5	36

MIRJA HOMMEL

#	Article	IF	CITATIONS
19	Polymorphic and Conserved Targets of Antibodies againstPlasmodium falciparumduring Pregnancy. Journal of Infectious Diseases, 2008, 197, 1350-1351.	4.0	6
20	TCR Affinity Promotes CD8+ T Cell Expansion by Regulating Survival. Journal of Immunology, 2007, 179, 2250-2260.	0.8	45
21	Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nature Protocols, 2007, 2, 2057-2067.	12.0	221
22	Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nature Immunology, 2006, 7, 466-474.	14.5	300
23	Monitoring T Cell Proliferation. , 2005, , 123-141.		4
24	On the dynamics of Tâ€cell activation in lymph nodes. Immunology and Cell Biology, 2004, 82, 62-66.	2.3	15
25	Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Medicine, 2003, 9, 1151-1157.	30.7	301
26	Dynamic Changes During the Immune Response in T Cell–Antigen-presenting Cell Clusters Isolated	8.5	56

Dynamic Changes During the Immune Response in T Cell–Antigen-presenting Cell Clusters Isolated from Lymph Nodes. Journal of Experimental Medicine, 2003, 197, 269-280. 26