
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687839/publications.pdf Version: 2024-02-01

Δκι S Ηλλητιτικικά

#	Article	IF	CITATIONS
1	Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.	27.8	3,249
2	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	21.4	2,634
3	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	21.4	1,439
4	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke subtypes. Nature Genetics, 2018, 50, 524-537.	21.4	1,124
5	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 2018, 50, 1412-1425.	21.4	924
6	FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics, 2016, 32, 1493-1501.	4.1	584
7	Metabolite Profiling and Cardiovascular Event Risk. Circulation, 2015, 131, 774-785.	1.6	547
8	Genetics of 35 blood and urine biomarkers in the UK Biobank. Nature Genetics, 2021, 53, 185-194.	21.4	377
9	The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 2016, 48, 1171-1184.	21.4	362
10	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
11	Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population. PLoS Genetics, 2014, 10, e1004494.	3.5	351
12	Endotoxemia Is Associated With an Increased Risk of Incident Diabetes. Diabetes Care, 2011, 34, 392-397.	8.6	343
13	The impact of low-frequency and rare variants on lipid levels. Nature Genetics, 2015, 47, 589-597.	21.4	310
14	Identification of heart rate–associated loci and their effects on cardiac conduction and rhythm disorders. Nature Genetics, 2013, 45, 621-631.	21.4	282
15	Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nature Medicine, 2020, 26, 549-557.	30.7	281
16	Genomic prediction of coronary heart disease. European Heart Journal, 2016, 37, 3267-3278.	2.2	277
17	Metabolic Signatures of Adiposity in Young Adults: Mendelian Randomization Analysis and Effects of Weight Change. PLoS Medicine, 2014, 11, e1001765.	8.4	271
18	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	21.4	261

#	Article	IF	CITATIONS
19	Circulating Ceramides Predict Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2424-2430.	2.4	249
20	New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nature Communications, 2016, 7, 10495.	12.8	245
21	Endotoxemia, Immune Response to Periodontal Pathogens, and Systemic Inflammation Associate With Incident Cardiovascular Disease Events. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1433-1439.	2.4	218
22	Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies. American Journal of Human Genetics, 2017, 101, 539-551.	6.2	200
23	Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation. Molecular Psychiatry, 2020, 25, 1859-1875.	7.9	191
24	The Biomarker GlycA Is Associated with Chronic Inflammation and Predicts Long-Term Risk of Severe Infection. Cell Systems, 2015, 1, 293-301.	6.2	179
25	Twenty-five-year trends in myocardial infarction attack and mortality rates, and case-fatality, in six European populations. Heart, 2015, 101, 1413-1421.	2.9	169
26	Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nature Genetics, 2022, 54, 134-142.	21.4	164
27	Exome sequencing of Finnish isolates enhances rare-variant association power. Nature, 2019, 572, 323-328.	27.8	161
28	Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia, 2019, 62, 2298-2309.	6.3	141
29	Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2016, 15, 695-707.	10.2	130
30	Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney. Hypertension, 2017, 70, .	2.7	123
31	Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nature Communications, 2019, 10, 4329.	12.8	120
32	Quantifying the Impact of Rare and Ultra-rare Coding Variation across the Phenotypic Spectrum. American Journal of Human Genetics, 2018, 102, 1204-1211.	6.2	102
33	Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature, 2020, 586, 769-775.	27.8	101
34	A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease. PLoS Genetics, 2020, 16, e1008629.	3.5	101
35	Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurology, The, 2021, 20, 351-361.	10.2	95
36	Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics, 2020, 52, 1314-1332.	21.4	91

#	Article	IF	CITATIONS
37	Geographic Variation and Bias in the Polygenic Scores of Complex Diseases and Traits in Finland. American Journal of Human Genetics, 2019, 104, 1169-1181.	6.2	90
38	Fine-Scale Genetic Structure in Finland. G3: Genes, Genomes, Genetics, 2017, 7, 3459-3468.	1.8	86
39	Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia, 2018, 61, 1424-1434.	6.3	85
40	Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health. European Respiratory Journal, 2021, 57, 2003091.	6.7	85
41	The effect of LRRK2 loss-of-function variants in humans. Nature Medicine, 2020, 26, 869-877.	30.7	79
42	Trends in long-term prognosis after acute coronary syndrome. European Journal of Preventive Cardiology, 2017, 24, 274-280.	1.8	67
43	Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals. Journal of the American Heart Association, 2020, 9, e016641.	3.7	67
44	CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits. Nature Communications, 2017, 8, 744.	12.8	64
45	Polygenic Risk Scores Predict Hypertension Onset and Cardiovascular Risk. Hypertension, 2021, 77, 1119-1127.	2.7	61
46	Polygenic Hyperlipidemias and Coronary Artery Disease Risk. Circulation Genomic and Precision Medicine, 2020, 13, e002725.	3.6	60
47	Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction. Nature Communications, 2020, 11, 2542.	12.8	59
48	A Blood Pressure Genetic Risk Score Is a Significant Predictor of Incident Cardiovascular Events in 32 669 Individuals. Hypertension, 2013, 61, 987-994.	2.7	57
49	Haplotype Sharing Provides Insights into Fine-Scale Population History and Disease in Finland. American Journal of Human Genetics, 2018, 102, 760-775.	6.2	57
50	Taxonomic signatures of cause-specific mortality risk in human gut microbiome. Nature Communications, 2021, 12, 2671.	12.8	55
51	Obstructive sleep apnoea and the risk for coronary heart disease and type 2 diabetes: a longitudinal population-based study in Finland. BMJ Open, 2018, 8, e022752.	1.9	54
52	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biology, 2019, 17, e3000443.	5.6	51
53	Apolipoprotein A-I concentrations and risk of coronary artery disease: A Mendelian randomization study. Atherosclerosis, 2020, 299, 56-63.	0.8	47
54	Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults. Diabetes Care, 2022, 45, 811-818.	8.6	47

#	Article	IF	CITATIONS
55	Associations of healthy food choices with gut microbiota profiles. American Journal of Clinical Nutrition, 2021, 114, 605-616.	4.7	42
56	Links between gut microbiome composition and fatty liver disease in a large population sample. Gut Microbes, 2021, 13, 1-22.	9.8	41
57	Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting. Cell Metabolism, 2022, 34, 719-730.e4.	16.2	35
58	Phylogeny-Aware Analysis of Metagenome Community Ecology Based on Matched Reference Genomes while Bypassing Taxonomy. MSystems, 2022, 7, e0016722.	3.8	35
59	Contribution of rare and common variants to intellectual disability in a sub-isolate of Northern Finland. Nature Communications, 2019, 10, 410.	12.8	32
60	Multivariate Genome-wide Association Analysis of a Cytokine Network Reveals Variants with Widespread Immune, Haematological, and Cardiometabolic Pleiotropy. American Journal of Human Genetics, 2019, 105, 1076-1090.	6.2	31
61	Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma. PLoS Genetics, 2020, 16, e1008682.	3.5	31
62	Low-Expression Variant of Fatty Acid–Binding Protein 4 Favors Reduced Manifestations of Atherosclerotic Disease and Increased Plaque Stability. Circulation: Cardiovascular Genetics, 2014, 7, 588-598.	5.1	28
63	ANGPTL8 protein-truncating variant associated with lower serum triglycerides and risk of coronary disease. PLoS Genetics, 2021, 17, e1009501.	3.5	28
64	Prediction of Blood Pressure and Blood Pressure Change With a Genetic Risk Score. Journal of Clinical Hypertension, 2016, 18, 181-186.	2.0	27
65	Aging of the population may not lead to an increase in the numbers of acute coronary events: a community surveillance study and modelled forecast of the future. Heart, 2013, 99, 954-959.	2.9	24
66	Coronary Artery Disease Risk and Lipidomic Profiles Are Similar in Hyperlipidemias With Family History and Populationâ€Ascertained Hyperlipidemias. Journal of the American Heart Association, 2019, 8, e012415.	3.7	24
67	Association of Circulating Metabolites in Plasma or Serum and Risk of Stroke. Neurology, 2021, 96, .	1.1	24
68	Association of structural variation with cardiometabolic traits in Finns. American Journal of Human Genetics, 2021, 108, 583-596.	6.2	22
69	Genetic Variants Contributing to Circulating Matrix Metalloproteinase 8 Levels and Their Association With Cardiovascular Diseases. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	21
70	Follow-Up of 316 Molecularly Defined Pediatric Long-QT Syndrome Patients. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 815-823.	4.8	20
71	Dairy Intake and Body Composition and Cardiometabolic Traits among Adults: Mendelian Randomization Analysis of 182041 Individuals from 18 Studies. Clinical Chemistry, 2019, 65, 751-760.	3.2	20
72	Genomic prediction of alcohol-related morbidity and mortality. Translational Psychiatry, 2020, 10, 23.	4.8	19

#	Article	IF	CITATIONS
73	Genetic Associations of Chronotype in the Finnish General Population. Journal of Biological Rhythms, 2020, 35, 501-511.	2.6	18
74	Risk factors for major adverse cardiovascular events after the first acute coronary syndrome. Annals of Medicine, 2021, 53, 817-823.	3.8	18
75	The validity of heart failure diagnoses in the Finnish Hospital Discharge Register. Scandinavian Journal of Public Health, 2020, 48, 20-28.	2.3	17
76	Eicosanoid Inflammatory Mediators Are Robustly Associated With Blood Pressure in the General Population. Journal of the American Heart Association, 2020, 9, e017598.	3.7	17
77	Efficient computation of Faith's phylogenetic diversity with applications in characterizing microbiomes. Genome Research, 2021, 31, 2131-2137.	5.5	16
78	Longâ€ŧerm risk of dementia following hospitalization due to physical diseases: A multicohort study. Alzheimer's and Dementia, 2020, 16, 1686-1695.	0.8	14
79	Modelling spatial patterns in hostâ€associated microbial communities. Environmental Microbiology, 2021, 23, 2374-2388.	3.8	12
80	Multiâ€phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations. Journal of Thrombosis and Haemostasis, 2022, 20, 1331-1349.	3.8	12
81	A plasma metabolite score of three eicosanoids predicts incident type 2 diabetes: a prospective study in three independent cohorts. BMJ Open Diabetes Research and Care, 2022, 10, e002519.	2.8	10
82	Genetic Profile of Endotoxemia Reveals an Association With Thromboembolism and Stroke. Journal of the American Heart Association, 2021, 10, e022482.	3.7	9
83	Comprehensive biomarker profiling of hypertension in 36 985 Finnish individuals. Journal of Hypertension, 2022, 40, 579-587.	0.5	9
84	Polygenic burden has broader impact on health, cognition, and socioeconomic outcomes than most rare and high-risk copy number variants. Molecular Psychiatry, 2021, 26, 4884-4895.	7.9	8
85	Changes in the fine-scale genetic structure of Finland through the 20th century. PLoS Genetics, 2021, 17, e1009347.	3.5	8
86	Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Human Genomics, 2021, 15, 34.	2.9	7
87	Association of the <i>MYOC</i> p.(Cln368Ter) Variant With Glaucoma in a Finnish Population. JAMA Ophthalmology, 2021, 139, 762.	2.5	7
88	Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge. Bioinformatics, 2018, 34, i395-i403.	4.1	6
89	Genome-wide association study of white-coat effect in hypertensive patients. Blood Pressure, 2019, 28, 239-249.	1.5	6
90	The validity of hospital discharge register data on non-ST-elevation and ST-elevation myocardial infarction in Finland. Scandinavian Cardiovascular Journal, 2020, 54, 108-114.	1.2	6

#	Article	IF	CITATIONS
91	Joint association between education and polygenic risk score for incident coronary heart disease events: a longitudinal population-based study of 26 203 men and women. Journal of Epidemiology and Community Health, 2021, 75, 651-657.	3.7	6
92	Cardiovascular Risk Factors and Ischemic Heart Disease. Circulation: Cardiovascular Genetics, 2016, 9, 279-286.	5.1	5
93	Coronary events in persons aged 75 years or older in Finland from 1995 to 2002: the FINAMI study. The American Journal of Geriatric Cardiology, 2008, 17, 78-86.	0.6	5
94	Case fatality of acute coronary events is improving even among elderly patients; the FINAMI study 1995–2012. Annals of Medicine, 2018, 50, 35-45.	3.8	3
95	A data-driven medication score predicts 10-year mortality among aging adults. Scientific Reports, 2020, 10, 15760.	3.3	3
96	Associations between circulating metabolites and arterial stiffness. Journal of Human Hypertension, 2021, 35, 809-811.	2.2	3
97	Informative Bayesian Neural Network Priors for Weak Signals. Bayesian Analysis, 2021, -1, .	3.0	1
98	Answer to Dr. Sabours letter about our article â€`the validity of hospital discharge register data on non-ST-elevation and ST-elevation myocardial infarction in Finland'. Scandinavian Cardiovascular Journal, 2020, 54, 338-338.	1.2	0
99	Associations of chronotype with clock genes polymorphisms. Proceedings of the Nutrition Society, 2020, 79, .	1.0	Ο
100	Joint associations of depression, genetic susceptibility and the area of residence for coronary heart disease incidence. Journal of Epidemiology and Community Health, 2021, , jech-2021-216451.	3.7	0
101	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		0
102	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		0
103	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		Ο
104	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		0
105	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		Ο
106	Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma. , 2020, 16, e1008682.		0
107	Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma. , 2020, 16, e1008682.		0
108	Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma. , 2020, 16, e1008682.		0

#	Article	IF	CITATIONS
109	Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma. , 2020, 16, e1008682.		0