Jacek Gebicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4687335/publications.pdf Version: 2024-02-01

IACER GEBICKI

#	Article	lF	CITATIONS
1	Hydrophobic deep eutectic solvents in microextraction techniques–A review. Microchemical Journal, 2020, 152, 104384.	4.5	251
2	Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments - MDPI, 2017, 4, 21.	3.3	179
3	Electronic noses in classification and quality control of edible oils: A review. Food Chemistry, 2018, 246, 192-201.	8.2	170
4	Electronic noses: Powerful tools in meat quality assessment. Meat Science, 2017, 131, 119-131.	5.5	149
5	Bioelectronic nose: Current status and perspectives. Biosensors and Bioelectronics, 2017, 87, 480-494.	10.1	127
6	Portable Electronic Nose Based on Electrochemical Sensors for Food Quality Assessment. Sensors, 2017, 17, 2715.	3.8	109
7	Application of electrochemical sensors and sensor matrixes for measurement of odorous chemical compounds. TrAC - Trends in Analytical Chemistry, 2016, 77, 1-13.	11.4	90
8	Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis. Analytica Chimica Acta, 2019, 1077, 14-29.	5.4	90
9	Treatment of malodorous air in biotrickling filters: A review. Biochemical Engineering Journal, 2019, 141, 146-162.	3.6	82
10	Application of Ionic Liquids in Amperometric Gas Sensors. Critical Reviews in Analytical Chemistry, 2016, 46, 122-138.	3.5	53
11	Advances in olfaction-inspired biomaterials applied to bioelectronic noses. Sensors and Actuators B: Chemical, 2018, 257, 511-537.	7.8	52
12	Application of an Electronic Nose Instrument to Fast Classification of Polish Honey Types. Sensors, 2014, 14, 10709-10724.	3.8	50
13	Different Ways to Apply a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality with Respect to Odour Nuisance in a Vicinity of Municipal Processing Plants. Sensors, 2017, 17, 2671.	3.8	49
14	Electronic Noses in Medical Diagnostics. Current Medicinal Chemistry, 2019, 26, 197-215.	2.4	49
15	Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 2019, 26, 9409-9434.	5.3	49
16	Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants. Environmental Monitoring and Assessment, 2016, 188, 32.	2.7	48
17	Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks. Sensors, 2018, 18, 519.	3.8	47
18	Determination of Odour Interactions of Three-Component Gas Mixtures Using an Electronic Nose. Sensors, 2017, 17, 2380.	3.8	44

#	Article	lF	CITATIONS
19	Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air. Processes, 2019, 7, 187.	2.8	43
20	Bioelectronic tongue: Current status and perspectives. Biosensors and Bioelectronics, 2020, 150, 111923.	10.1	43
21	Evaluation of Health Hazard Due to Emission of Volatile Organic Compounds from Various Processing Units of Wastewater Treatment Plant. International Journal of Environmental Research and Public Health, 2019, 16, 1712.	2.6	42
22	A case study of odour nuisance evaluation in the context of integrated urban planning. Journal of Environmental Management, 2018, 213, 417-424.	7.8	41
23	Emerging strategies for enhancing detection of explosives by artificial olfaction. Microchemical Journal, 2021, 164, 106025.	4.5	41
24	Hydrogen Storage in Geological Formations—The Potential of Salt Caverns. Energies, 2022, 15, 5038.	3.1	41
25	Discrimination of selected fungi species based on their odour profile using prototypes of electronic nose instruments. Measurement: Journal of the International Measurement Confederation, 2018, 116, 307-313.	5.0	39
26	Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies. Journal of Molecular Liquids, 2020, 308, 113101.	4.9	39
27	Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane. Energies, 2020, 13, 3379.	3.1	38
28	Prospects of ionic liquids application in electronic and bioelectronic nose instruments. TrAC - Trends in Analytical Chemistry, 2017, 93, 23-36.	11.4	37
29	Poultry meat freshness evaluation using electronic nose technology and ultra-fast gas chromatography. Monatshefte FÃ1⁄4r Chemie, 2017, 148, 1631-1637.	1.8	35
30	Supramolecular deep eutectic solvents and their applications. Green Chemistry, 2022, 24, 5035-5045.	9.0	35
31	Properties of a polyethyleneimine-based sensor for measuring medium and high relative humidity. Measurement Science and Technology, 2006, 17, 12-16.	2.6	33
32	Determination of authenticity of brand perfume using electronic nose prototypes. Measurement Science and Technology, 2015, 26, 125103.	2.6	33
33	A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site. Sensors, 2019, 19, 4284.	3.8	33
34	Quality Evaluation of Agricultural Distillates Using an Electronic Nose. Sensors, 2013, 13, 15954-15967.	3.8	28
35	Monitoring of odors emitted from stabilized dewatered sludge subjected to aging using proton transfer reaction–mass spectrometry. Environmental Science and Pollution Research, 2019, 26, 5500-5513.	5.3	28
36	Evaluation of Three Peptide Immobilization Techniques on a QCM Surface Related to Acetaldehyde Responses in the Gas Phase. Sensors, 2018, 18, 3942.	3.8	27

#	Article	IF	CITATIONS
37	Bio-inspired approaches for explosives detection. TrAC - Trends in Analytical Chemistry, 2021, 142, 116330.	11.4	24
38	Deep eutectic solvent-based green absorbents for the effective removal of volatile organochlorine compounds from biogas. Green Chemistry, 2021, 23, 4814-4827.	9.0	24
39	Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide. Microchemical Journal, 2020, 154, 104509.	4.5	23
40	The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process. Sustainability, 2019, 11, 4407.	3.2	22
41	Thermal degradation assessment of canola and olive oil using ultra-fast gas chromatography coupled with chemometrics. Monatshefte Für Chemie, 2017, 148, 1625-1630.	1.8	21
42	Application of the Electronic Nose Technique to Differentiation between Model Mixtures with COPD Markers. Sensors, 2013, 13, 5008-5027.	3.8	20
43	Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry. Critical Reviews in Analytical Chemistry, 2017, 47, 340-358.	3.5	19
44	Monitoring and efficiency assessment of biofilter air deodorization using electronic nose prototype. Chemical Papers, 2018, 72, 527-532.	2.2	19
45	Sample preparation and recent trends in volatolomics for diagnosing gastrointestinal diseases. TrAC - Trends in Analytical Chemistry, 2018, 108, 38-49.	11.4	18
46	Effects of n-butanol presence, inlet loading, empty bed residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapors from air. Chemical Papers, 2020, 74, 1039-1047.	2.2	18
47	Determination of odour concentration by TD-GC×GC–TOF-MS and field olfactometry techniques. Monatshefte Für Chemie, 2017, 148, 1651-1659.	1.8	17
48	Investigation of Air Quality beside a Municipal Landfill: The Fate of Malodour Compounds as a Model VOC. Environments - MDPI, 2017, 4, 7.	3.3	17
49	Removal of Siloxanes from Model Biogas by Means of Deep Eutectic Solvents in Absorption Process. Materials, 2021, 14, 241.	2.9	17
50	Effect of oxygenation time on signal of a sensor based on ionic liquids. Electrochimica Acta, 2011, 56, 9910-9915.	5.2	15
51	Monitoring of n-butanol vapors biofiltration process using an electronic nose combined with calibration models. Monatshefte F¼r Chemie, 2018, 149, 1693-1699.	1.8	15
52	Influence of Selected Saccharides on the Precipitation of Calcium-Vaterite Mixtures by the CO2 Bubbling Method. Crystals, 2019, 9, 117.	2.2	15
53	Olfactory receptor-based biosensors as potential future tools in medical diagnosis. TrAC - Trends in Analytical Chemistry, 2022, 150, 116599.	11.4	15
54	Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. Chemosphere, 2022, 306, 135608.	8.2	15

#	Article	IF	CITATIONS
55	Dynamic Headspace Sampling as an Initial Step for Sample Preparation in Chromatographic Analysis. Journal of AOAC INTERNATIONAL, 2017, 100, 1599-1606.	1.5	14
56	A state of the art review on the use of fungi in biofiltration to remove volatile hydrophobic pollutants. Reviews in Environmental Science and Biotechnology, 2022, 21, 225-246.	8.1	14
57	Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts. Catalysts, 2022, 12, 362.	3.5	14
58	Recent progress in the development of peptide-based gas biosensors for environmental monitoring. Case Studies in Chemical and Environmental Engineering, 2022, 5, 100197.	6.1	14
59	Determination of Odor Intensity of Binary Gas Mixtures Using Perceptual Models and an Electronic Nose Combined with Fuzzy Logic. Sensors, 2019, 19, 3473.	3.8	13
60	New Carvone-Based Deep Eutectic Solvents for Siloxanes Capture from Biogas. International Journal of Molecular Sciences, 2021, 22, 9551.	4.1	13
61	Complementary use of GCxGC–TOF–MS and statistics for differentiation of variety in biosolid samples. Monatshefte Für Chemie, 2018, 149, 1587-1594.	1.8	12
62	Purification of model biogas from toluene using deep eutectic solvents. E3S Web of Conferences, 2019, 116, 00078.	0.5	12
63	The Use of Sensory Analysis Techniques to Assess the Quality of Indoor Air. Critical Reviews in Analytical Chemistry, 2017, 47, 37-50.	3.5	10
64	Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry. Sensors, 2020, 20, 5531.	3.8	10
65	Management of Dark Fermentation Broth via Bio Refining and Photo Fermentation. Energies, 2021, 14, 6268.	3.1	10
66	Electrochemical Sensor for Measurement of Volatile Organic Compounds Employing Square Wave Perturbation Voltage. Metrology and Measurement Systems, 2010, 17, 637-649.	1.4	9
67	Ultrasound and Clinical Preoperative Characteristics for Discrimination Between Ovarian Metastatic Colorectal Cancer and Primary Ovarian Cancer: A Case-Control Study. Diagnostics, 2019, 9, 210.	2.6	9
68	Development of Gas Sensor Array for Methane Reforming Process Monitoring. Sensors, 2021, 21, 4983.	3.8	9
69	Simultaneous Removal of Hexane and Ethanol from Air in a Biotrickling Filter—Process Performance and Monitoring Using Electronic Nose. Sustainability, 2020, 12, 387.	3.2	8
70	A Prototype of Electrochemical Sensor for Measurements of Carbonyl Compounds in Air. Electroanalysis, 2011, 23, 1958-1966.	2.9	7
71	Rapid Evaluation of Poultry Meat Shelf Life Using PTR-MS. Food Analytical Methods, 2018, 11, 2085-2092.	2.6	7
72	Complementary Use of Multi-dimensional Gas Chromatography and Proton Transfer Reaction Mass Spectrometry for Identification of Rapeseed Oil Quality Indicators. Food Analytical Methods, 2018, 11, 3417-3424.	2.6	7

#	Article	IF	CITATIONS
73	Mesophilic and thermophilic dark fermentation course analysis using sensor matrices and chromatographic techniques. Chemical Papers, 2020, 74, 1573-1582.	2.2	7
74	Efficient Extraction of Fermentation Inhibitors by Means of Green Hydrophobic Deep Eutectic Solvents. Molecules, 2022, 27, 157.	3.8	7
75	Devices for the Production of Reference Gas Mixtures. Critical Reviews in Analytical Chemistry, 2016, 46, 361-373.	3.5	6
76	Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose. E3S Web of Conferences, 2018, 28, 01036.	0.5	6
77	Instrumental measurement of odour nuisance in city agglomeration using electronic nose. E3S Web of Conferences, 2018, 28, 01012.	0.5	6
78	Alternative methods for dark fermentation course analysis. SN Applied Sciences, 2019, 1, 1.	2.9	6
79	Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications. Biosensors, 2022, 12, 309.	4.7	6
80	A new method for real-time monitoring of volatiles in frying fumes using proton transfer reaction mass spectrometry with time-of-flight analyser. Monatshefte Für Chemie, 2018, 149, 1549-1554.	1.8	5
81	Biotrickling filtration of n-butanol vapors: process monitoring using electronic nose and artificial neural network. Monatshefte F¼r Chemie, 2019, 150, 1667-1673.	1.8	5
82	The use of various species of fungi in biofiltration of air contaminated with odorous volatile organic compounds. E3S Web of Conferences, 2019, 100, 00021.	0.5	5
83	Electronic nose – an instrument for odour nuisances monitoring. E3S Web of Conferences, 2019, 100, 00079.	0.5	4
84	Identification of odor of volatile organic compounds using classical sensory analysis and electronic nose technique. Environmental Protection Engineering, 2014, 40, .	0.1	4
85	Determination of Odor Air Quality Index (OAQII) Using Gas Sensor Matrix. Molecules, 2022, 27, 4180.	3.8	4
86	Evaluation of Immobilization of Selected Peat-Isolated Yeast Strains of the Species Candida albicans and Candida subhashii on the Surface of Artificial Support Materials Used for Biotrickling Filtration. Processes, 2020, 8, 801.	2.8	3
87	Accuracy of Ultrasonography and Magnetic Resonance Imaging for Preoperative Staging of Cervical Cancer—Analysis of Patients from the Prospective Study on Total Mesometrial Resection. Diagnostics, 2021, 11, 1749.	2.6	3
88	Application of ionic liquids in electronic nose instruments. , 2016, , 339-360.		2
89	Application of Electronic Nose to Ambient Air Quality Evaluation With Respect to Odour Nuisance in Vicinity of Municipal Landfills and Sewage Treatment. Advances in Computer and Electrical Engineering Book Series, 2018, , 175-201.	0.3	2
90	<title>Investigations of a new humidity sensor with polymer film</title> . , 2006, , .		1

#	Article	IF	CITATIONS
91	Remote Monitoring of Environmental Pollutants. Green Chemistry and Sustainable Technology, 2019, , 325-352.	0.7	1
92	Quality evaluation of agricultural distillates using different types of electronic noses. Proceedings of SPIE, 2014, , .	0.8	0
93	Comparison of different types of electronic nose instruments for evaluation of odour nuisance from landfill. Proceedings of SPIE, 2014, , .	0.8	0
94	Comparison of the measurement techniques employed for evaluation of ambient air odor quality. Proceedings of SPIE, 2016, , .	0.8	0
95	Monitoring of odor nuisance in the tri-city agglomeration. , 2016, , .		0
96	Application of electronic nose to effectiveness monitoring of air contaminated with toluene vapors biofiltration process. SHS Web of Conferences, 2018, 57, 02014.	0.2	0
97	Electronic Noses for Indoor Air Quality Assessment. Advances in Computer and Electrical Engineering Book Series, 2018, , 202-223.	0.3	0