
## Patrizia Casaccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4686889/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in<br>mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017,<br>114, 10713-10718. | 7.1  | 709       |
| 2  | Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nature Neuroscience, 2012, 15, 1621-1623.                                                                                                     | 14.8 | 578       |
| 3  | Brain Cell Type Specific Gene Expression and Co-expression Network Architectures. Scientific Reports, 2018, 8, 8868.                                                                                                         | 3.3  | 335       |
| 4  | Epigenome-wide differences in pathology-free regions of multiple sclerosis–affected brains. Nature<br>Neuroscience, 2014, 17, 121-130.                                                                                       | 14.8 | 239       |
| 5  | Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. ELife, 2016, 5, .                                                                                            | 6.0  | 226       |
| 6  | Integrative network analysis of nineteen brain regions identifies molecular signatures and networks<br>underlying selective regional vulnerability to Alzheimer's disease. Genome Medicine, 2016, 8, 104.                    | 8.2  | 224       |
| 7  | Maternal Cannabis Use Alters Ventral Striatal Dopamine D2 Gene Regulation in the Offspring.<br>Biological Psychiatry, 2011, 70, 763-769.                                                                                     | 1.3  | 215       |
| 8  | Clemastine Enhances Myelination in the Prefrontal Cortex and Rescues Behavioral Changes in Socially<br>Isolated Mice. Journal of Neuroscience, 2016, 36, 957-962.                                                            | 3.6  | 209       |
| 9  | Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Science Signaling, 2017, 10, .                                                                               | 3.6  | 199       |
| 10 | HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage.<br>Nature Neuroscience, 2010, 13, 180-189.                                                                              | 14.8 | 188       |
| 11 | Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Molecular Systems Biology, 2014, 10, 743.                                                                              | 7.2  | 182       |
| 12 | Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nature Neuroscience, 2015, 18, 536-544.                                                                                                                          | 14.8 | 160       |
| 13 | Selective Chemical Modulation of Gene Transcription Favors Oligodendrocyte Lineage Progression.<br>Chemistry and Biology, 2014, 21, 841-854.                                                                                 | 6.0  | 132       |
| 14 | Epigenetic regulation of oligodendrocyte identity. Trends in Neurosciences, 2010, 33, 193-201.                                                                                                                               | 8.6  | 130       |
| 15 | Changed Histone Acetylation Patterns in Normal-Appearing White Matter and Early Multiple Sclerosis<br>Lesions. Journal of Neuroscience, 2011, 31, 3435-3445.                                                                 | 3.6  | 130       |
| 16 | Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics.<br>Brain, 2014, 137, 2271-2286.                                                                                           | 7.6  | 128       |
| 17 | Epigenetic mechanisms in multiple sclerosis: implications for pathogenesis and treatment. Lancet<br>Neurology, The, 2013, 12, 195-206.                                                                                       | 10.2 | 123       |
| 18 | HDAC inhibitors and neurodegeneration: At the edge between protection and damage.<br>Pharmacological Research, 2010, 62, 11-17.                                                                                              | 7.1  | 109       |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chromatin Landscape Defined by Repressive Histone Methylation during Oligodendrocyte<br>Differentiation. Journal of Neuroscience, 2015, 35, 352-365.                                                                                        | 3.6  | 103       |
| 20 | Yy1 as a molecular link between neuregulin and transcriptional modulation of peripheral myelination.<br>Nature Neuroscience, 2010, 13, 1472-1480.                                                                                           | 14.8 | 102       |
| 21 | Multiscale network modeling of oligodendrocytes reveals molecular components of myelin<br>dysregulation in Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 82.                                                                  | 10.8 | 100       |
| 22 | Axonal Damage in Multiple Sclerosis. Mount Sinai Journal of Medicine, 2011, 78, 231-243.                                                                                                                                                    | 1.9  | 96        |
| 23 | Identification of a Gene Regulatory Network Necessary for the Initiation of Oligodendrocyte Differentiation. PLoS ONE, 2011, 6, e18088.                                                                                                     | 2.5  | 88        |
| 24 | Two-tier transcriptional control of oligodendrocyte differentiation. Current Opinion in Neurobiology, 2009, 19, 479-485.                                                                                                                    | 4.2  | 83        |
| 25 | Functional Characterization of DNA Methylation in the Oligodendrocyte Lineage. Cell Reports, 2016, 15, 748-760.                                                                                                                             | 6.4  | 81        |
| 26 | Differential Modulation of the Oligodendrocyte Transcriptome by Sonic Hedgehog and Bone<br>Morphogenetic Protein 4 via Opposing Effects on Histone Acetylation. Journal of Neuroscience, 2012,<br>32, 6651-6664.                            | 3.6  | 77        |
| 27 | Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination.<br>Nature Neuroscience, 2015, 18, 511-520.                                                                                                 | 14.8 | 76        |
| 28 | Disease-modifying therapies alter gut microbial composition in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e517.                                                                                                         | 6.0  | 75        |
| 29 | Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. ELife, 2019, 8, .                                                                                                                | 6.0  | 74        |
| 30 | PRMT5-mediated regulation of developmental myelination. Nature Communications, 2018, 9, 2840.                                                                                                                                               | 12.8 | 73        |
| 31 | Sox2 Sustains Recruitment of Oligodendrocyte Progenitor Cells following CNS Demyelination and Primes Them for Differentiation during Remyelination. Journal of Neuroscience, 2015, 35, 11482-11499.                                         | 3.6  | 67        |
| 32 | Mechanostimulation Promotes Nuclear and Epigenetic Changes in Oligodendrocytes. Journal of Neuroscience, 2016, 36, 806-813.                                                                                                                 | 3.6  | 65        |
| 33 | Gene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia.<br>Schizophrenia Research, 2010, 120, 150-158.                                                                                         | 2.0  | 64        |
| 34 | E2F1 Coregulates Cell Cycle Genes and Chromatin Components during the Transition of<br>Oligodendrocyte Progenitors from Proliferation to Differentiation. Journal of Neuroscience, 2014,<br>34, 1481-1493.                                  | 3.6  | 64        |
| 35 | Wellness and multiple sclerosis: The National MS Society establishes a Wellness Research Working<br>Group and research priorities. Multiple Sclerosis Journal, 2018, 24, 262-267.                                                           | 3.0  | 62        |
| 36 | Conserved Chromosome 2q31 Conformations Are Associated with Transcriptional Regulation of GAD1<br>GABA Synthesis Enzyme and Altered in Prefrontal Cortex of Subjects with Schizophrenia. Journal of<br>Neuroscience, 2013, 33, 11839-11851. | 3.6  | 60        |

| #  | Article                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | PAD2-Mediated Citrullination Contributes to Efficient Oligodendrocyte Differentiation and Myelination. Cell Reports, 2019, 27, 1090-1102.e10.                      | 6.4  | 59        |
| 38 | Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria. MSystems, 2018, 3, .                                      | 3.8  | 56        |
| 39 | Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress. Developmental Neurobiology, 2018, 78, 152-162.      | 3.0  | 54        |
| 40 | Primary brain tumors, neural stem cell, and brain tumor cancer cells: Where is the link?.<br>Neuropharmacology, 2010, 58, 903-910.                                 | 4.1  | 53        |
| 41 | Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1<br>Overexpression. Journal of Neuroscience, 2015, 35, 12002-12017.     | 3.6  | 51        |
| 42 | Epigenetic control of oligodendrocyte development: adding new players to old keepers. Current<br>Opinion in Neurobiology, 2016, 39, 133-138.                       | 4.2  | 49        |
| 43 | Cellâ€context specific role of the E2F/Rb pathway in development and disease. Glia, 2010, 58, 377-390.                                                             | 4.9  | 48        |
| 44 | TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nature<br>Communications, 2021, 12, 3359.                                              | 12.8 | 47        |
| 45 | Efficient Remyelination Requires DNA Methylation. ENeuro, 2017, 4, ENEURO.0336-16.2017.                                                                            | 1.9  | 45        |
| 46 | Bromodomains: Translating the words of lysine acetylation into myelin injury and repair.<br>Neuroscience Letters, 2016, 625, 4-10.                                 | 2.1  | 43        |
| 47 | Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma. Brain, 2022, 145, 569-583.                                                  | 7.6  | 40        |
| 48 | Roles of p53 and p27 Kip1 in the regulation of neurogenesis in the murine adult subventricular zone.<br>European Journal of Neuroscience, 2011, 34, 1040-1052.     | 2.6  | 38        |
| 49 | Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course. EBioMedicine, 2019, 43, 392-410.                              | 6.1  | 36        |
| 50 | c-Myc-dependent transcriptional regulation of cell cycle and nucleosomal histones during oligodendrocyte differentiation. Neuroscience, 2014, 276, 72-86.          | 2.3  | 35        |
| 51 | A metabolic perspective on CSF-mediated neurodegeneration in multiple sclerosis. Brain, 2019, 142, 2756-2774.                                                      | 7.6  | 35        |
| 52 | Shaping the oligodendrocyte identity by epigenetic control. Epigenetics, 2010, 5, 124-128.                                                                         | 2.7  | 34        |
| 53 | Interplay between transcriptional control and chromatin regulation in the oligodendrocyte lineage.<br>Glia, 2015, 63, 1357-1375.                                   | 4.9  | 33        |
| 54 | The Microbiome–Gut–Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes<br>Modulates Behavioral Responses. Neurotherapeutics, 2018, 15, 31-35. | 4.4  | 32        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination. PLoS Biology, 2016, 14, e1002467.                                                                                       | 5.6  | 31        |
| 56 | Combinatorial actions of Tgfl <sup>2</sup> and Activin ligands promote oligodendrocyte development and CNS myelination. Development (Cambridge), 2014, 141, 2414-2428.                                       | 2.5  | 30        |
| 57 | Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP. Journal of Extracellular Vesicles, 2020, 10, e12035. | 12.2 | 29        |
| 58 | Aspartoacylase deficiency affects early postnatal development of oligodendrocytes and myelination.<br>Neurobiology of Disease, 2010, 40, 432-443.                                                            | 4.4  | 28        |
| 59 | Epigenetic Modifiers Are Necessary but Not Sufficient for Reprogramming Non-Myelinating Cells into<br>Myelin Gene-Expressing Cells. PLoS ONE, 2010, 5, e13023.                                               | 2.5  | 27        |
| 60 | Subcellular Distribution of HDAC1 in Neurotoxic Conditions Is Dependent on Serine Phosphorylation.<br>Journal of Neuroscience, 2017, 37, 7547-7559.                                                          | 3.6  | 26        |
| 61 | Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes.<br>International Journal of Molecular Sciences, 2016, 17, 614.                                             | 4.1  | 24        |
| 62 | Retrograde Degenerative Signaling Mediated by the p75 Neurotrophin Receptor Requires p150Glued Deacetylation by Axonal HDAC1. Developmental Cell, 2018, 46, 376-387.e7.                                      | 7.0  | 23        |
| 63 | An integrated approach to design novel therapeutic interventions for demyelinating disorders.<br>European Journal of Neuroscience, 2012, 35, 1879-1886.                                                      | 2.6  | 22        |
| 64 | Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Multiple Sclerosis<br>Journal, 2018, 24, 69-74.                                                                           | 3.0  | 22        |
| 65 | Fumarates target the metabolic-epigenetic interplay of brain-homing T cells in multiple sclerosis.<br>Brain, 2019, 142, 647-661.                                                                             | 7.6  | 22        |
| 66 | Epigenomic signature of adrenoleukodystrophy predicts compromised oligodendrocyte differentiation. Brain Pathology, 2018, 28, 902-919.                                                                       | 4.1  | 21        |
| 67 | DNA methylation in oligodendroglial cells during developmental myelination and in disease.<br>Neurogenesis (Austin, Tex ), 2017, 4, e1270381.                                                                | 1.5  | 20        |
| 68 | Epigenetics in NG2 glia cells. Brain Research, 2016, 1638, 183-198.                                                                                                                                          | 2.2  | 19        |
| 69 | Mechanoâ€modulation of nuclear events regulating oligodendrocyte progenitor gene expression. Glia, 2019, 67, 1229-1239.                                                                                      | 4.9  | 18        |
| 70 | Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron, 2022, 110, 1116-1138.                                                                                                             | 8.1  | 18        |
| 71 | Multiple sclerosis patient-derived CSF induces transcriptional changes in proliferating oligodendrocyte progenitors. Multiple Sclerosis Journal, 2015, 21, 1655-1669.                                        | 3.0  | 16        |
| 72 | Interplay of hormones and p53 in modulating gender dimorphism of subventricular zone cell number.<br>Journal of Neuroscience Research, 2009, 87, 3297-3305.                                                  | 2.9  | 14        |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Oligodendrocyte progenitors as environmental biosensors. Seminars in Cell and Developmental<br>Biology, 2021, 116, 38-44.                                                                          | 5.0  | 12        |
| 74 | The Chromatin Environment Around Interneuron Genes in Oligodendrocyte Precursor Cells and Their Potential for Interneuron Reprograming. Frontiers in Neuroscience, 2019, 13, 829.                  | 2.8  | 11        |
| 75 | White Matter Plasticity in Anxiety: Disruption of Neural Network Synchronization During Threat-Safety Discrimination. Frontiers in Cellular Neuroscience, 2020, 14, 587053.                        | 3.7  | 11        |
| 76 | Gut-brain communication in demyelinating disorders. Current Opinion in Neurobiology, 2020, 62, 92-101.                                                                                             | 4.2  | 11        |
| 77 | Bioenergetic Failure in Rat Oligodendrocyte Progenitor Cells Treated with Cerebrospinal Fluid<br>Derived from Multiple Sclerosis Patients. Frontiers in Cellular Neuroscience, 2017, 11, 209.      | 3.7  | 10        |
| 78 | Dynamic Lamin B1-Gene Association During Oligodendrocyte Progenitor Differentiation.<br>Neurochemical Research, 2020, 45, 606-619.                                                                 | 3.3  | 10        |
| 79 | Nâ€myc downstream regulated family member 1 ( <scp>NDRG1</scp> ) is enriched in myelinating oligodendrocytes and impacts myelin degradation in response to demyelination. Glia, 2022, 70, 321-336. | 4.9  | 10        |
| 80 | Defining the chromatin landscape in demyelinating disorders. Neurobiology of Disease, 2010, 39, 47-52.                                                                                             | 4.4  | 9         |
| 81 | Anti-TANKyrase weapons promote myelination. Nature Neuroscience, 2011, 14, 945-947.                                                                                                                | 14.8 | 8         |
| 82 | PRMT5 Interacting Partners and Substrates in Oligodendrocyte Lineage Cells. Frontiers in Cellular Neuroscience, 2022, 16, 820226.                                                                  | 3.7  | 8         |
| 83 | Retrospective unbiased plasma lipidomic of progressive multiple sclerosis patients-identifies lipids discriminating those with faster clinical deterioration. Scientific Reports, 2020, 10, 15644. | 3.3  | 7         |
| 84 | Does the gut microbiota contribute to the oligodendrocyte progenitor niche?. Neuroscience Letters, 2020, 715, 134574.                                                                              | 2.1  | 6         |
| 85 | Sample Preparation for Metabolic Profiling using MALDI Mass Spectrometry Imaging. Journal of Visualized Experiments, 2020, , .                                                                     | 0.3  | 5         |
| 86 | ACTL6a coordinates axonal caliber recognition and myelination in the peripheral nerve. IScience, 2022, 25, 104132.                                                                                 | 4.1  | 3         |
| 87 | EPIGENETIC MECHANISMS IN MULTIPLE SCLEROSIS. Revista Española De Esclerosis Múltiple, 2014, 6, 25-35.                                                                                              | 0.0  | 2         |
| 88 | Foreword. Glia, 2020, 68, 1551-1553.                                                                                                                                                               | 4.9  | 1         |
| 89 | Prenatal Exposure to a Climate-Related Disaster Results in Changes of the Placental Transcriptome and Infant Temperament. Frontiers in Genetics, 2022, 13, 887619.                                 | 2.3  | 1         |
| 90 | S4â€02â€03: Accelerating Medicines Partnership: Coâ€Expression Networks. Alzheimer's and Dementia, 2016,<br>12, P322.                                                                              | 0.8  | 0         |

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | F2â€01â€01: Oligodendrocyteâ€Enriched Gene Networks Reveal Novel Pathways and Key Targets in the<br>Pathogenesis of Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P214. | 0.8  | Ο         |
| 92 | Introduction to the special issue on myelin plasticity in the central nervous system. Developmental Neurobiology, 2018, 78, 65-67.                                                 | 3.0  | 0         |
| 93 | Emerging concepts in neuroscience research: 2019 highlights. Lancet Neurology, The, 2020, 19, 21-22.                                                                               | 10.2 | Ο         |
| 94 | Early life events effect on myelin gene expression. FASEB Journal, 2013, 27, 693.4.                                                                                                | 0.5  | 0         |