Noah D Finkelstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4685691/publications.pdf

Version: 2024-02-01

34 2,359 15 29 papers citations h-index g-index

37 37 37 37 1776

37 37 37 1776
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 2011, 48, 952-984.	3.3	631
2	Reducing the Gender Achievement Gap in College Science: A Classroom Study of Values Affirmation. Science, 2010, 330, 1234-1237.	12.6	570
3	PhET: Interactive Simulations for Teaching and Learning Physics. Physics Teacher, 2006, 44, 18-23.	0.3	199
4	Fitting in to Move Forward. Psychology of Women Quarterly, 2017, 41, 420-436.	2.0	117
5	Fitting in or opting out: A review of key social-psychological factors influencing a sense of belonging for women in physics. Physical Review Physics Education Research, 2016, 12, .	2.9	112
6	PROFESSIONAL DEVELOPMENT: Enhanced: Who Is Responsible for Preparing Science Teachers?. Science, 2006, 313, 445-446.	12.6	91
7	Learning Physics in Context: A study of student learning about electricity and magnetism. International Journal of Science Education, 2005, 27, 1187-1209.	1.9	76
8	The process of transforming an advanced lab course: Goals, curriculum, and assessments. American Journal of Physics, 2013, 81, 63-70.	0.7	74
9	Critical look at physics identity: An operationalized framework for examining race and physics identity. Physical Review Physics Education Research, 2018, 14, .	2.9	58
10	The Perceived Value of College Physics Textbooks: Students and Instructors May Not See Eye to Eye. Physics Teacher, 2006, 44, 338-342.	0.3	49
11	How a gender gap in belonging contributes to the gender gap in physics participation. AIP Conference Proceedings, 2013, , .	0.4	31
12	Incorporating learning goals about modeling into an upper-division physics laboratory experiment. American Journal of Physics, 2014, 82, 876-882.	0.7	29
13	Deconstructing Black physics identity: Linking individual and social constructs using the critical physics identity framework. Physical Review Physics Education Research, 2019, 15, .	2.9	27
14	Fostering sustainable improvements in science education: An analysis through four frames. Science Education, 2019, 103, 1125-1150.	3.0	25
15	Categorical framework for mathematical sense making in physics. Physical Review Physics Education Research, 2020, 16, .	2.9	12
16	Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics. AIP Conference Proceedings, 2009, , .	0.4	11
17	Are Most People Too Dumb for Physics?. Physics Teacher, 2009, 47, 418-422.	0.3	11
18	Facilitating Change in Undergraduate STEM: Initial Results from an Interdisciplinary Literature Review. , 2008, , .		7

#	Article	IF	CITATIONS
19	Towards the STEM DBER Alliance: Why we Need a Discipline-Based STEM Education Research Community. International Journal of Research in Undergraduate Mathematics Education, 2017, 3, 247-254.	1.8	7
20	Towards the STEM DBER Alliance: Why We Need a Discipline-Based, STEM-Education Research Community. Journal of Geoscience Education, 2017, 65, 215-218.	1.4	7
21	Transforming Undergraduate Education From the Middle Out With Departmental Action Teams. Change, 2019, 51, 64-70.	0.5	7
22	Investigating the Source of the Gender Gap in Introductory Physics. , 2007, , .		6
23	How Abstract is Abstract? Layering meaning in physics , 2008, , .		5
24	Promoting childrenâ \in TMs agency and communication skills in an informal science program. AIP Conference Proceedings, 2013, , .	0.4	5
25	Applying a mathematical sense-making framework to student work and its potential for curriculum design. Physical Review Physics Education Research, 2021, 17, .	2.9	4
26	The Persistence of the Gender Gap in Introductory Physics. , 2008, , .		3
27	Toward an analytic framework of physics teaching assistants' pedagogical knowledge. , 2012, , .		3
28	What Should We Expect Students to Learn?. Physics Teacher, 2009, 47, 484-484.	0.3	2
29	Tracking Recitation Instructors' Awareness of Student Conceptual Difficulties. AIP Conference Proceedings, 2009, , .	0.4	2
30	Aesthetics and expanding perception in fluid physics. , 2015, , .		2
31	Infusing Equity, Diversity, and Inclusion Throughout Our Physics Curriculum: (Re)defining What It Means to Be a Physicist. Physics Teacher, 2022, 60, 172-175.	0.3	2
32	Refraining Analogy: framing as a mechanism of analogy use. AIP Conference Proceedings, 2007, , .	0.4	1
33	Surely You Must Be Joking, Mr. Twain!: Reengaging Science Students through Visual Aesthetics. Leonardo, 2020, 53, 311-315.	0.3	1
34	Applying a framework for characterizing physics teaching assistants' beliefs and practices. , 2013, , .		0